Non-topological Condensates for the Self-dual Maxwell-Chern-Simons Model

Weiwei Ao , Chao Liu

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 663 -694.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 663 -694. DOI: 10.1007/s11401-025-0041-0
Article
research-article

Non-topological Condensates for the Self-dual Maxwell-Chern-Simons Model

Author information +
History +
PDF

Abstract

In this paper, the authors study the elliptic system arising from the study of Maxwell-Chern-Simons model. They show that there exists a family of non-topological solutions with magnetic field concentrated at some of the vortex points as the two physical parameters satisfying almost optimal conditions where the limiting profile is the singular Liouville equation.

Keywords

Self-dual Maxwell-Chern-Simons model / Non-topological condensates / Vortex concentration / 35B40 / 35J47

Cite this article

Download citation ▾
Weiwei Ao, Chao Liu. Non-topological Condensates for the Self-dual Maxwell-Chern-Simons Model. Chinese Annals of Mathematics, Series B, 2025, 46(5): 663-694 DOI:10.1007/s11401-025-0041-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AbrikosovA A. On the magnetic properties of superconductors of the second group. Sov. Phys. JETP, 1957, 5: 1174-1182

[2]

AoW W, KwonO, LeeY. Periodic Maxwell-Chern-Simons vortices with concentration property. Math. Ann., 2021, 381(3–4): 1885-1942.

[3]

AoW W, KwonO, LeeY. Multi-bubbling condenstes for the Maxwell-Chern-Simons model. Calc. Var. Partial Differential Equations, 2022, 61134. 19 pp

[4]

ArefH, StremlerM A. On the motion of three point vortices in a periodic strip. J. Fluid Mech., 1996, 314: 1-25.

[5]

BethuelF, BrezisH, HeleinFGinzburg-Landau Vortices, 1994, Boston, MA. Birkhauser Boston, Inc.. .

[6]

Bogomol’nylE. The stability of classical solutions. Sov. J. Nucl. Phys., 1976, 24: 449-454

[7]

Boutet de Monvel-BerthierA, GeorgescuV, PuriceR. A boundary value problem related to the Ginzburg-Landau model. Comm. Math. Phys., 1991, 142: 1-23.

[8]

CaffarelliL A, YangY S. Vortex condensation in Chern-Simons-Higgs model: An existence theorem. Comm. Math. Phys., 1995, 168: 321-336.

[9]

ChaeD, ImanuvilovY. The existence of non-topological multivortex solutions in the relativistic self-dual Chern-Simons theory. Comm. Math. Phys., 2000, 215: 119-142.

[10]

ChaeD, KimN. Topological multivortex solutions of the self-dual Maxwell-Chern-Simons-Higgs system. J. Differential Equations, 1997, 134: 154-182.

[11]

Chae, D. and Kim, N., Vortex condensates in the relativistic self-dual Maxwell-Chern-Simons-Higgs system, 1997, arXiv: cond-mat/9711211.

[12]

ChanH, FuC C, LinC S. Non-topological multi-vortex solutions to the self-dual Chern-Simons-Higgs equation. Comm. Math. Phys., 2002, 231: 189-221.

[13]

ChoeK. Uniqueness of the topological multivortex solution in the selfdual Chern-Simons theory. J. Math. Phys., 2005, 46012305. 22 pp.

[14]

ChoeK. Asymptotic behavior of condensate solutions in the Chern-Simons-Higgs theory. J. Math. Phys., 2007, 48103501.

[15]

ChoeK, KimN. Blow-up solutions of the self-dual Chern-Simons-Higgs vortex equation. Ann. Inst. H. Poincaré Anal. Non Linaire, 2008, 25: 313-338.

[16]

ChoeK, KimN, LinC S. Existence of self-dual non-topological solutions in the Chren-Simons-Higgs model. Ann. Inst. H. Poincaré Anal. Non Linaire, 2011, 28: 837-852.

[17]

Del PinoM A, EspositoP, FigueroaP, MussoM. Nontopological condensates for the self-dual Chern-Simons-Higgs model. Comm. Pure Appl. Math., 2015, 68: 1191-1283.

[18]

DingW Y, JostJ, LiJ Y, et al.. Self-duality equations for Ginzburg-Landau and Seiberg-Witten type functionals with 6th order potentials. Comm. Math. Phys., 2001, 217: 383-407.

[19]

DingW Y, JostJ, LiJ Y, WangG F. An analysis of the two-vortex case in the Chern-Simons Higgs model. Calc. Var. Partial Differential Equations, 1989, 7: 87-97.

[20]

DunneGSelf-dual Chern-Simons Theories, 1995, New York. Springer-Verlag. .

[21]

FanY W, LeeY, LinC S. Mixed type solutions of the SU(3) models on a torus. Comm. Math. Phys., 2016, 343(1): 233-271.

[22]

HanJ. Topological solutions in the self-dual Chern-Simons-Higgs theory in a background metric. Lett. Math. Phys., 2003, 65: 37-47.

[23]

HanJ. Asymptotic limit for condensate solutions in the Abelian Chern-Simons Higgs model. Proc. Amer. Math. Soc., 2003, 131(6): 1839-1845.

[24]

HanJ. Asymptotic limit for condensate solutions in the Abelian Chern-Simons Higgs model II. Proc. Amer. Math. Soc., 2003, 131(12): 3827-3832.

[25]

HanJ, JangJ. Self-dual Chern-Simons vortices on bounded domains. Lett. Math. Phys., 2003, 64: 45-56.

[26]

HanJ, KimN. Nonself-dual Chern-Simons and Maxwell-Chern-Simons vortices on bounded domains. J. Funct. Anal., 2005, 221(1): 167-204.

[27]

HongJ, KimY, PacP Y. Multivortex Solutions of the Abelian Chern-Simons-Higgs Theory. Phys. Rev. Lett., 1990, 64: 2230-2233.

[28]

JackiwR, WeinbergE J. Self-dual Chen-Simons vortices. Phys. Rev. Lett., 1990, 64: 2234-2237.

[29]

JaffeA, TaubesC HVortices and Monopoles, 1980, Boston, MA. Birkhauser.

[30]

KimS. Solitons of the self-dual Chern-Simons theory on a cylinder. Lett. Math. Phys., 2002, 61: 113-122.

[31]

KimS, KimY. Self-dual Chern-Simons vortices on Riemann surfaces. J. Math. Phys., 2002, 43: 2355-2362.

[32]

KurataK. Existence of nontopological solutions for a nonlinear elliptic equation from Chern-Simons-Higgs theory in a general background metric. Differential Integral Equations, 2001, 14: 925-935.

[33]

LandauL, LifschitzEThe Classical Theory of Fields, 1951, Cambridge MA. Addison-Wesley.

[34]

LeeC, LeeK, MinH. Self-dual Maxwell-Chern-Simons solitons. Phys. Lett. B, 1990, 252: 79-83.

[35]

LeeY. Bubbling mixed type solutions of the SU(3) models on a torus. J. Math. Phys., 2017, 58111508. 16 pp

[36]

LinC S, YanS S. Bubbling solutions for the SU(3) Chern-Simons Model on a torus. Comm. Pure Appl. Math., 2013, 66: 991-1027.

[37]

LinC S, YanS S. Existence ofbubbling solutions for Chern-Simons model on a torus. Arch. Ration. Mech. Anal., 2013, 207: 353-392.

[38]

NielsenH, OlesenP. Vortex-Line models for dual strings. Nucl. Phys. B, 1973, 61: 45-61.

[39]

NolascoM, TarantelloG. On a sharp type inequality on two dimensional compact manifolds. Arch. Rational Mech. Anal., 1998, 145: 161-195.

[40]

NolascoM, TarantelloG. Double vortex condensates in the Chern-Simons-Higgs theory. Calc. Var. Partial Differential Equations, 1999, 9: 31-94.

[41]

PacardF, RiviereT. Linear and nonlinear aspects of vortices, The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, 2000, Boston, MA. Birkhauser Boston, Inc.. 39

[42]

RicciardiT. Asymptotics for Maxwell-Chern-Simons multivortices. Nonlinear Anal., 2002, 50: 1093-1106.

[43]

RicciardiT, TarantelloG. Vortices in the Maxwell-Chern-Simons theory. Comm. Pure Appl. Math., 2000, 53: 811-851.

[44]

SchiffJ. Integrability of Chern-Simons-Higgs and Abelian Higgs vortex equations in a background metric. J. Math. Phys., 1991, 32: 753-761.

[45]

SpruckJ, YangY S. The existence of nontopological solitons in the self-dual Chern-Simons theory. Comm. Math. Phys., 1992, 149: 361-376.

[46]

SpruckJ, YangY S. Topological solutions in the self-dual Chern-Simons theory. Ann. Inst. H. Poincaré Anal. Non Lineaire, 1995, 12: 75-97.

[47]

StremlerM. Relative equilibria of singly periodic point vortex arrays. Phys. Fluids., 2003, 12: 3767-3775.

[48]

StruweM, TarantelloG. On multivortex solutions in Chern-Simons gauge theory. Boll. Uni. Mat. Ital. Sez. B Artic. Ric. Mat., 1998, 8(1): 109-121

[49]

TarantelloG. Multiple condensate solutions for the Chern-Simons-Higgs theory. J. Math. Phys., 1996, 37: 3769-3796.

[50]

TarantelloG. Selfdual Maxwell-Chern-Simons vortices. Milan J. Math., 2004, 72: 29-80.

[51]

TarantelloG. Selfdual Gauge field vortices, An analytical approach. Progress in Nonlinear Differential Equations and their Applications, 2008, Boston. Birkhauser Boston, Inc..

[52]

TaubesC H. Arbitrary N-vortex solutions to the first order Ginzburg-Landau equations. Comm. Math. Phys., 1980, 72(3): 277-292.

[53]

’t HooftG. A property of electric and magnetic flux in non-Abelian gauge theories. Nucl. Phys. B, 1979, 153: 141-160.

[54]

WangR G. The existence of Chern-Simons vortices. Comm. Math. Phys., 1991, 137: 587-597.

[55]

WangS, YangY S. Abrikosov’s vortices in the critical coupling. SIAM J. Math. Anal., 1992, 23: 1125-1140.

[56]

YangY SSolitons in Field Theory and Nonlinear Analysis, 2001, New York. Springer-Verlag. .

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/