Conformal Perturbations of Twisted Dirac Operators and Noncommutative Residue

Sining Wei , Jian Wang , Yong Wang

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 759 -794.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 759 -794. DOI: 10.1007/s11401-025-0040-1
Article
research-article

Conformal Perturbations of Twisted Dirac Operators and Noncommutative Residue

Author information +
History +
PDF

Abstract

In this paper, the authors obtain two kinds of Kastler-Kalau-Walze type theorems for conformal perturbations of twisted Dirac operators and conformal perturbations of signature operators by a vector bundle with a non-unitary connection on six-dimensional manifolds with (respectively without) boundary.

Keywords

Conformal perturbations of twisted Dirac operators / Conformal perturbations of twisted signature operators / Noncommutative residue / Non-unitary connection / 53C40 / 53C42

Cite this article

Download citation ▾
Sining Wei, Jian Wang, Yong Wang. Conformal Perturbations of Twisted Dirac Operators and Noncommutative Residue. Chinese Annals of Mathematics, Series B, 2025, 46(5): 759-794 DOI:10.1007/s11401-025-0040-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

GuilleminV W. A new proof of Weyl’s formula on the asymptotic distribution of eigenvalues. Adv. in Math., 1985, 55(2): 131-160.

[2]

WodzickiM. Local invariants of spectral asymmetry. Invent. Math., 1984, 75(1): 143-177.

[3]

AdlerM. On a trace functional for formal pseudo-differential operators and the symplectic structure of Korteweg-de Vries type equations. Invent. Math., 1979, 50: 219-248.

[4]

ConnesA. Quantized calculus and applications. XIth International Congress of Mathematical Physics (Paris, 1994), 1995, Cambridge, MA. International Press. 1536

[5]

ConnesA. The action functional in noncommutative geometry. Comm. Math. Phys., 1988, 117: 673-683.

[6]

KastlerD. The Dirac operator and gravitation. Comm. Math. Phys., 1995, 166: 633-643.

[7]

KalauW, WalzeM. Gravity, non-commutative geometry and the Wodzicki residue. J. Geom. Phys., 1995, 16: 327-344.

[8]

AckermannT. A note on the Wodzicki residue. J. Geom. Phys., 1996, 20: 404-406.

[9]

PongeR. Noncommutative geometry and lower dimensional volumes in Riemannian geometry. Lett. Math. Phys., 2008, 83: 19-32.

[10]

FedosovB V, GolseF, LeichtnamE, SchroheE. The noncommutative residue for manifolds with boundary. J. Funct. Anal., 1996, 142: 1-31.

[11]

SchroheE. Noncommutative residue, Dixmier’s trace, and heat trace expansions on manifolds with boundary. Contemp. Math., 1999, 242: 161-186.

[12]

WangY. Gravity and the noncommutative residue for manifolds with boundary. Lett. Math. Phys., 2007, 80: 37-56.

[13]

WangY. Lower-dimensional volumes and Kastler-Kalau-Walze type theorem for manifolds with boundary. Commun. Theor. Phys., 2010, 54: 38-42.

[14]

WangY. Differential forms and the Wodzicki residue for manifolds with boundary. J. Geom. Phys., 2006, 56: 731-753.

[15]

Wang, J. and Wang, Y., A Kastler-Kalau-Walze type theorem for 7-dimensional manifolds with boundary, Abstr. Appl. Anal. Art., 2014, Art. ID 465782, 18 pp.

[16]

WangJ, WangY. A Kastler-Kalau-Walze type theorem for five-dimensional manifolds with boundary. Int. J. Geom. Methods Mod. Phys., 2015, 1251550064. 34 pp

[17]

WangJ, WangY. The Kastler-Kalau-Walze type theorem for 6-dimensional manifolds with boundary. J. Math. Phys., 2015, 56052501. 14 pp

[18]

WangJ, WangY. A general Kastler-Kalau-Walze type theorem for manifolds with boundary. Int. J. Geom. Methods Mod. Phys., 2016, 1311650003. 16 pp

[19]

Wang, J. and Wang, Y., On K-K-W type theorems for conformal perturbations of twisted Dirac operators, 2021, arXiv: 2108.03149.

[20]

Bismut, J. M. and Zhang, W., An extension of a theorem by Cheeger and Müller, Astérisque., 205, 1992, 235 pp.

[21]

Boutet de MonvelL. Boundary problems for pseudo-differential operators. Acta Math., 1971, 126: 11-51.

[22]

GrubbGFunctional Calculus of Pseudodifferential Boundary Problems, 1986, Boston, MA. Birkh?user Boston, Inc.. .

[23]

RempelS, SchulzeB WIndex Theory of Elliptic Boundary Problems, 1982, Berlin. Akademie-Verlag. .

[24]

SchroheE, SchulzeB WBoundary value problems in Boutet de Monvel’s algebra for manifolds with conical singularities. I, 1994, Berlin. Akademie Verlag. 972095

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

397

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/