The Jordan Algebra of Complex Symmetric Operators

Cun Wang , Sen Zhu

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 733 -758.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 733 -758. DOI: 10.1007/s11401-025-0039-7
Article
research-article

The Jordan Algebra of Complex Symmetric Operators

Author information +
History +
PDF

Abstract

For a conjugation C on a separable, complex Hilbert space $\cal{H}$, the set ${\cal{S}}_{C}$ of C-symmetric operators on $\cal{H}$ forms a weakly closed, selfadjoint, Jordan operator algebra. In this paper, the authors study ${\cal{S}}_{C}$ in comparison with the algebra $\cal{B}(H)$ of all bounded linear operators on $\cal{H}$, and obtain ${\cal{S}}_{C}$-analogues of some classical results concerning $\cal{B}(H)$. The authors determine the Jordan ideals of ${\cal{S}}_{C}$ and their dual spaces. Jordan automorphisms of ${\cal{S}}_{C}$ are classified. The authors determine the spectra of Jordan multiplication operators on ${\cal{S}}_{C}$ and their different parts. It is proved that those Jordan invertible ones constitute a dense, path connected subset of ${\cal{S}}_{C}$.

Keywords

Complex symmetric operator / Jordan operator algebra / Cartan factor / Jordan ideal / Automorphism / 47B99 / 46L70 / 17C65 / 46K70

Cite this article

Download citation ▾
Cun Wang, Sen Zhu. The Jordan Algebra of Complex Symmetric Operators. Chinese Annals of Mathematics, Series B, 2025, 46(5): 733-758 DOI:10.1007/s11401-025-0039-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ApostolC, FialkowL A, HerreroD A, VoiculescuDApproximation of Hilbert Space Operators, 1984, Boston. Pitman (Advanced Publishing Program). 2

[2]

ApostolC, MorrelB B. On uniform approximation of operators by simple models. Indiana Univ. Math. J., 1977, 26: 427-442.

[3]

BercoviciH, TimotinD. Truncated Toeplitz operators and complex symmetries. Proc. Amer. Math. Soc., 2018, 146: 261-266.

[4]

BlecherD P, WangZ. Involutive operator algebras. Positivity, 2020, 24: 13-53.

[5]

CartanÉ. Sur les domaines bornés homogènes de l’espace de n variables complexes. Abh. Math. Semin. Univ. Hamburg, 1935, 11: 116-162.

[6]

ChuC-HJordan structures in geometry and analysis, 2012, Cambridge. Cambridge University Press. 190

[7]

ConwayJ BA Course in Operator Theory, 2000, Providence. American Mathematical Society.

[8]

DancigerJ, GarciaS R, PutinarM. Variational principles for symmetric bilinear forms. Math. Nachr., 2008, 281: 786-802.

[9]

DouglasR GBanach Algebra Techniques in Operator Theory, 19982nd ed.New York. Springer-Verlag. .

[10]

FongC K, MiersC R, SourourA R. Lie and Jordan ideals of operators on Hilbert space. Proc. Amer. Math. Soc., 1982, 84: 516-520.

[11]

FriedmanY, RussoB. The Gelfand-Naimark theorem for JB*-triples. Duke Math. J., 1986, 53: 139-148.

[12]

GarciaS RConjugation and Clark operators, Recent Advances in Operator-Related Function Theory, 2006, Providence. Amer. Math. Soc.. 67111. 393

[13]

GarciaS R. Means of unitaries, conjugations, and the Friedrichs operator. J. Math. Anal. Appt., 2007, 335: 941-947.

[14]

GarciaS R. The norm and modulus of a Foguel operator. Indiana Univ. Math. J., 2009, 58: 2305-2315.

[15]

GarciaS R, ProdanE, PutinarM. Mathematical and physical aspects of complex symmetric operators. J. Phys. A, 2014, 47353001.

[16]

GarciaS R, PutinarM. Complex symmetric operators and applications. Trans. Amer. Math. Soc., 2006, 358: 1285-1315.

[17]

GarciaS R, PutinarM. Complex symmetric operators and applications, II. Trans. Amer. Math. Soc., 2007, 359: 3913-3931.

[18]

GarciaS R, WogenW R. Complex symmetric partial isometries. J. Funct. Anal., 2009, 257: 1251-1260.

[19]

GlazmanI M. An analogue of the extension theory of Hermitian operators and a non-symmetric one-dimensional boundary problem on a half-axis. Dokl. Akad. Nauk SSSR (N.S.), 1957, 115: 214-216

[20]

GuoK Y, JiY Q, ZhuS. A C*-algebra approach to complex symmetric operators. Trans. Amer. Math. Soc., 2015, 367: 6903-6942.

[21]

Hai, P. V. and Putinar, M., Complex symmetric evolution equations, Anal. Math. Phys., 10, 2020.

[22]

HerreroD AApproximation of Hilbert Space Operators, 19892nd ed.Harlow. Longman Scientific & Technical. 1

[23]

HuaL-K. On the theory of automorphic functions of a matrix level I, Geometrical basis. Amer. J. Math., 1944, 66: 470-488.

[24]

JacobsonN. Normal semi-linear transformations. Amer. J. Math., 1939, 61: 45-58.

[25]

JordanP, von NeumannJ, WignerE. On an algebraic generalization of the quantum mechanical formalism. Ann. of Math., 1934, 35: 29-64.

[26]

KaupW. A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z., 1983, 183: 503-529.

[27]

Kliś-GarlickaK, PtakM. C-symmetric operators and reflexivity. Oper. Matrices, 2015, 9: 225-232.

[28]

LumerG, RosenblumM. Linear operator equations. Proc. Amer. Math. Soc., 1959, 10: 32-41.

[29]

Maitland WrightJ D. Jordan C*-algebras. Michigan Math. J., 1977, 24: 291-302

[30]

ProdanE, GarciaS R, PutinarM. Norm estimates of complex symmetric operators applied to quantum systems. J. Phys. A, 2006, 39: 389-400.

[31]

RingroseJ RCompact Non-self-adjoint Operators, 1971, London. Van Nostrand Reinhold Co..

[32]

RosenblumM. On the operator equation BXXA = Q. Duke Math. J., 1956, 23: 263-269.

[33]

SarasonD. Algebraic properties of truncated Toeplitz operators. Oper. Matrices, 2007, 1: 491-526.

[34]

SchattenRNorm Ideals of Completely Continuous Operators, 19702nd ed.Berlin, New York. Springer-Verlag. .

[35]

SchurI. Ein Satz ueber quadratische Formen mit komplexen Koeffizienten. Amer. J. Math., 1945, 67: 472-480.

[36]

ShenJ, ZhuS. Complex symmetric generators for operator algebras. J. Operator Theory, 2017, 77: 421-454.

[37]

SiegelC L. Symplectic geometry. Amer. J. Math., 1943, 65: 1-86.

[38]

TakagiT. On an algebraic problem related to an analytic theorem of Carathéodory and Fejér and on an allied theorem of Landau. Japan J. Math., 1925, 1: 83-93.

[39]

ToppingD MJordan algebras of self-adjoint operators, 196548 pp53

[40]

Waleed NoorS. On an example of a complex symmetric composition operator on H2$H^{2}(\mathbb{D})$. J. Funct. Anal., 2015, 269: 1899-1901.

[41]

WangM, YaoX. Complex symmetry of weighted composition operators in several variables. Internat. J. Math., 2016, 271650017.

[42]

ZhuS. Approximation of complex symmetric operators. Math. Ann., 2016, 364: 373-399.

[43]

ZhuS. Complex symmetric operators, skew symmetric operators and reflexivity. Oper. Matrices, 2017, 11: 941-951.

[44]

ZhuS, ZhaoJ. Complex symmetric generators of C*-algebras. J. Math. Anal. Appl., 2017, 456: 796-822.

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

74

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/