Some q-Supercongruences from Singh’s Quadratic Transformation

Victor J. W. Guo

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 725 -732.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 725 -732. DOI: 10.1007/s11401-025-0038-8
Article
research-article

Some q-Supercongruences from Singh’s Quadratic Transformation

Author information +
History +
PDF

Abstract

Applying Singh’s quadratic transformation and the “creative microscoping” method (introduced by the author and Zudilin in 2019), the author proves several new q-supercongruences for truncated 4ϕ3 series. Some related conjectures on q-supercongruences are also presented.

Keywords

Cyclotomic polynomials / q-Supercongruences / Singh’s quadratic transformation / Creative microscoping / 33D15 / 11A07 / 11B65

Cite this article

Download citation ▾
Victor J. W. Guo. Some q-Supercongruences from Singh’s Quadratic Transformation. Chinese Annals of Mathematics, Series B, 2025, 46(5): 725-732 DOI:10.1007/s11401-025-0038-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

El BachraouiM. On supercongruences for truncated sums of squares of basic hypergeometric series. Ramanujan J., 2021, 54: 415-426.

[2]

GasperG, RahmanMEncyclopedia of Mathematics and Its Applications, 20042nd ed.Cambridge. Cambridge University Press. 96

[3]

GuoV J W, LiuJ-C. q-Analogues of two Ramanujan-type formulas for 1/π. J. Difference Equ. Appl, 2018, 24: 1368-1373.

[4]

GuoV J W, SchlosserM J. Some new q-congruences for truncated basic hypergeometric series. Symmetry, 2019, 112268.

[5]

GuoV J W, SchlosserM J. Some q-supercongruences from transformation formulas for basic hypergeometric series. Constr. Approx., 2021, 53: 155-200.

[6]

GuoV J W, ZengJ. Short proofs of summation and transformation formulas for basic hypergeometric series. J. Math. Anal Appl, 2007, 327: 310-325.

[7]

GuoV J W, ZudilinW. A q-microscope for supercongruences. Adv. Math., 2019, 346: 329-358.

[8]

GuoV J W, ZudilinW. On a q-deformation of modular forms. J. Math. Anal. Appl., 2019, 475: 1636-646.

[9]

GuoV J W, ZudilinW. Dwork-type supercongruences through a creative q-microscope. J. Combin. Theory, Ser. A, 2021, 178105362.

[10]

HeH, WangX. Some congruences that extend Van Hamme’s (D.2) super congruence. J. Math. Anal. Appl, 2023, 527127344.

[11]

LiuJ-C. On a congruence involving q-Catalan numbers. C. R. Math. Acad. Sci. Paris, 2020, 358: 211-215.

[12]

LiuJ-C, PetrovF. Congruences on sums of q-binomial coefficients. Adv. Appl. Math., 2020, 116102003.

[13]

LiuY, WangX. Some q-supercongruences from a quadratic transformation by Rahman. Results Math., 2022, 7744.

[14]

LongL, RamakrishnaR. Some supercongruences occurring in truncated hypergeometric series. Adv. Math., 2016, 290: 773-808.

[15]

NiH-X, PanH. Divisibility of some binomial sums. Acta Arith., 2020, 194: 367-381.

[16]

SunZ-H. Supercongruences involving Apéry-like numbers and binomial coefficients. AIMS Math., 2022, 7: 2729-2781.

[17]

van HammeL. Some conjectures concerning partial sums of generalized hypergeometric series. p-Adic Functional Analysis (Nijmegen, 1996), 1997, New York. Dekker. 223236192

[18]

WangC. A new q-extension of the (H.2) congruence of Van Hamme for primes p ≡ 1 (mod 4). Results Math., 2021, 76205.

[19]

WangX, XuC. q-Supercongruences on triple and quadruple sums. Results Math., 2023, 7827.

[20]

WeiC. A further q-analogue of Van Hamme’s (H.2) supercongruence for any prime p ≡ 1 (mod 4). Results Math., 2021, 7692.

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/