N-Graded Toda Lattices

Ruguang Zhou , Huiyue Zhou , Na Li , Min Zhao

Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) : 23 -34.

PDF
Chinese Annals of Mathematics, Series B ›› 2026, Vol. 47 ›› Issue (1) :23 -34. DOI: 10.1007/s11401-025-0037-9
Article
research-article

N-Graded Toda Lattices

Author information +
History +
PDF

Abstract

The ℤN-graded Toda lattices are introduced and investigated under both infinite and periodic boundary conditions. Initially, a hierarchy of integrable ℤN-graded Toda lattices is constructed using the technique of discrete zero curvature equations under infinite boundary conditions. The integrability of these lattices is demonstrated through their bi-Hamiltonian structures. Subsequently, particular emphasis is placed on the study of the ℤN-graded Toda lattice, the first nontrivial lattice in the hierarchy. It is discovered that this lattice can be represented in a Newtonian form with an exponential potential in the Flaschka-Manakov variables. Furthermore, the periodic ℤN-graded Toda lattice is identified as either a periodic Toda lattice or a set of independent periodic Toda lattices sharing the same periodicity. Finally, the complete integrability of the periodic ℤN-graded Toda lattice as a Hamiltonian system in the Liouville sense is established.

Keywords

N-Graded Toda lattice / Zero curvature representation / Bi-Hamiltonian structure / Integrable Hamiltonian system / 37K10 / 37K60 / 37J35

Cite this article

Download citation ▾
Ruguang Zhou, Huiyue Zhou, Na Li, Min Zhao. ℤN-Graded Toda Lattices. Chinese Annals of Mathematics, Series B, 2026, 47(1): 23-34 DOI:10.1007/s11401-025-0037-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Toda M. Vibration of a chain with non-linear interation. J. Phys. Soc. Jpn., 1967, 22(2): 431-436

[2]

Toda M. Theory of Non-linear Lattice, 1989, Berlin, Springer-Verlag

[3]

Toda M, Sogo K. Discovery of lattice soliton. J. Phys. A: Math. Theor., 2018, 51(6): 060201

[4]

Takasaki K. Toda hierarchies and their applications. J. Phys. A: Math. Theor., 2018, 51(20203001

[5]

Flaschka H. The Toda lattice II, Existence of integrals. Phys. Rev. B., 1974, 9(41924-1925

[6]

Manakov S. Complete integrability and stochastization of discrete dynamical systems. Sov. Phys. JETP, 1975, 40(2): 269-274

[7]

Faddeev L, Takhtajan L. Hamiltonian Methods in the Theory of Solitons, 1987, Berlin, Springer-Verlag

[8]

Reyman A G, Semenov-Tian-Shansky M A. Arnold V I, Novikov S P. Group Theoretical Methods in the Theory of the Finite Dimensional Integrable Systems. Dynamical systems VII, 1994, Berlin, Springer-Verlag116225

[9]

Gesatesy F, Holden H, Michor J, Teschl G. Soliton Equations and Their Algebro-Geometric Solutions, Vol. 2, (1 + 1)-Dimensional Discrete Models. Cambridge Studies in Advanced Mathematics, 2008, Cambridge, Cambridge University Press114

[10]

Nagai A, Satsuma J. Discrete soliton equations and convergence acceleration algorithms. Phys. Lett. A, 1995, 209(5–6): 305-312

[11]

Hirota R, Ito M, Kako F. Two-dimensional Toda lattice equations. Progr. Theoret. Phys. Suppl., 1988, 94: 42-58

[12]

Mikhailov A. Integrability of a two-dimensional generalization of the Toda chain. JETP Lett., 1979, 30: 443-448

[13]

Vekslerchik V. Solitons of the (2+2)-dimensional Toda lattice. J. Phys. A: Math. Theor., 2019, 52(4): 045202

[14]

Aptekarev, A., Derevyagin, M., Miki, H. and Van Assche, W., Multidimensional Toda lattices: Continuous and discrete time, Symmetry Integrability Geom. Methods Appl., 12, 2016, Paper No. 054, 30pp.

[15]

Bogoyavlensky O. On perturbations of the periodic Toda lattice. Comm. Math. Phys., 1976, 51(3201-209

[16]

Kostant B. The solution to a generalized Toda lattice and representation theory. Adv. Math., 1979, 34(3): 195-338

[17]

Ercolani N, Flaschka H, Singer S. The Geometry of the Full Kostant-Toda Lattice, 1991, Boston, MA, Birkhäuser Inc.181225

[18]

Damianou, P. and Magri, F., A gentle (without chopping) approach to the full Kostant-Toda lattice, Symmetry Integrability Geom. Methods Appl., 1, 2005, Paper No. 010, 12pp.

[19]

Hu H S. Laplace sequences of surfaces in projective space and two dimensional Toda equations. Lett. Math. Phys., 2001, 57(1): 19-32

[20]

Tu G Z. A trace identity and its applications to the theory of discrete integrable systems. J. Phys A: Math. Gen., 1990, 23(17): 3903-3922

[21]

Fordy A, Xenitidis P. ℤN graded discrete Lax pair and integrable difference equations. J. Phys. A: Math. Theor., 2017, 50(16): 165205

[22]

Zakharov V, Manakov S, Novikov S, Pitaevskii L. Soliton Theory: Inverse Scattering Method, 1980, Moscow, Nauka

[23]

Zhou R G, Li N, Zhu J Y. A general method for constructing vector integrable lattice systems. Phys. Lett. A, 2019, 383(8697-702

[24]

Zhu J Y, Zhou R G. A vector CTL-RTL hierarchy with bi-Hamiltonian structure. Appl. Math. Lett., 2019, 87: 154-159

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

/