On Higher Moments of the Error Term in the Rankin-Selberg Problem

Jing Huang , Yoshio Tanigawa , Wenguang Zhai , Deyu Zhang

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 795 -806.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 795 -806. DOI: 10.1007/s11401-025-0036-x
Article
research-article

On Higher Moments of the Error Term in the Rankin-Selberg Problem

Author information +
History +
PDF

Abstract

Let Δ1(x; φ) denote the error term in the classical Rankin-Selberg problem. In this paper, the authors consider the higher power moments of Δ1(x; φ) and derive the asymptotic formulas for 3-rd, 4-th and 5-th power moments, which improve the previous results.

Keywords

The Rankin-Selberg problem / Power moment / Voronoï formula / 11N37

Cite this article

Download citation ▾
Jing Huang, Yoshio Tanigawa, Wenguang Zhai, Deyu Zhang. On Higher Moments of the Error Term in the Rankin-Selberg Problem. Chinese Annals of Mathematics, Series B, 2025, 46(5): 795-806 DOI:10.1007/s11401-025-0036-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DeligneP. La conjecture de Weil. I. Inst. Hautes Études Sci. publ. Math., 1974, 43: 273-307.

[2]

HuangB. On the Rankin-Selberg problem. Math. Ann., 2021, 381(3–4): 1217-1251.

[3]

IvićA. Large values of certain number-theoretic error terms. Acta Arith., 1990, 56: 135-159.

[4]

IvićA. Estimates of convolutions of certain number-theoretic error terms. Intern. J. Math. Math. Sciences, 2004, 2004: 1-23.

[5]

IvićA. On some mean square estimates in the Rankin-Selberg problem. Appl. Anal: Discrete Math., 2007, 1: 111-121

[6]

IvićA. On the fourth moment in the Rankin-Selberg problem. Arch. Math. (Basel), 2008, 90: 412-419.

[7]

IvićA. On the Rankin-Selberg problem in short intervals. Mosc. J. Comb. Number Theory, 2012, 2: 3-17

[8]

IvićA. On the Rankin-Selberg zeta function. J. Aust. Math. Soc., 2012, 93: 101-113.

[9]

IvićA, MatsumotoK, TanigawaY. On Riesz means of the coefficients of the Rankin-Selberg series. Math. Proc. Camb. Phil. Soc., 1999, 127: 117-131.

[10]

MatsumotoKThe Mean Values and the Universality of Rankin-Selberg L-Functions, 2001, Berlin. de Grnyter. 201222

[11]

RankinR A. Contributions to the theory of Ramanujans function τ(n) and similar arithmetical functions II. The order of the Fourier coefficients of integral modular forms. Proc. Cambridge Phil. Soc., 1939, 35: 357-372.

[12]

RobertO, SargosP. Three-dimensional exponential sums with monomial. J. Reine Angew. Math., 2006, 591: 1-20.

[13]

SelbergA. Bemerkungen über eine Dirichletsche reihe, die mit der theorie der modulformen nahe verbunden ist. Arch. Math. Naturvid., 1940, 43: 47-50

[14]

TanigawaY, ZhaiW G, ZhangD Y. On the Rankin-Selberg problem: Higher power moments of the Riesz mean error term. Sci. China Ser. A, 2008, 51: 148-160.

[15]

ZhaiW G. On higher-power moments of Δ(x)(II). Acta Arith., 2004, 114: 35-54.

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/