Number of Singular Points on Projective Surfaces

Jihao Liu , Lingyao Xie

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 713 -724.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (5) : 713 -724. DOI: 10.1007/s11401-025-0035-y
Article
research-article

Number of Singular Points on Projective Surfaces

Author information +
History +
PDF

Abstract

The number of singular points on a klt Fano surface X is less than or equal to 2ρ(X) + 2.

Keywords

Singular points / Fano variety / Canonical bundle formula / 14E30 / 14B05

Cite this article

Download citation ▾
Jihao Liu, Lingyao Xie. Number of Singular Points on Projective Surfaces. Chinese Annals of Mathematics, Series B, 2025, 46(5): 713-724 DOI:10.1007/s11401-025-0035-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BelousovG N. Del Pezzo surfaces with log terminal singularities. Mat. Zametki, 2008, 83(2): 170-180

[2]

BelousovG N. The maximal number of singular points on log del Pezzo surfaces. J. Math. Sci. Univ. Tokyo, 2009, 16(2): 231-238

[3]

BirkarC. On connectedness of non-klt loci of singularities of pairs. J. Differential Geom., 2024, 126(2): 431-474.

[4]

BirkarC, CasciniP, HaconC D, McKernanJ. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 2010, 23(2): 405-468.

[5]

BirkarC, ZhangD Q. Effectivity of Iitaka fibrations and pluricanonical systems of polarized pairs. Pub. Math. IHES., 2016, 123: 283-331.

[6]

BlacheR. The structure of l.c. surfaces of Kodaira dimension zero, I. J. Algebraic Geom., 1995, 4(1): 137-179

[7]

BrownM, McKernanJ, SvaldiR, ZongH R. A geometric characterization of toric varieties. Duke Math. J., 2018, 167(5): 923-968.

[8]

ChenM, JiangC, LiB. On minimal varieties growing from quasismooth weighted hypersurfaces. J. Differential Geom., 2024, 127(1): 35-76.

[9]

DolgachevIWeighted projective varieties, Group Actions and Vector Fields (Vancouver, B.C.), 1982, Berlin. Springer-Verlag. 956

[10]

FilipazziS. On a generalized canonical bundle formula and generalized adjunction. Ann. Sc. Norm. Super. Pisa Cl. Sci., 2020, 5(21): 1187-1221

[11]

Filipazzi, S., and Svaldi, R., On the connectedness principle and dual complexes for generalized pairs, Forum Math. Sigma, 11, 2023, Paper No. e33, 39pp.

[12]

FurushimaM. Singular del Pezzo surfaces and analytic compactifiations of 3-dimensional complex affine space ℂ3. Nagoya Math. J., 1986, 104: 1-28.

[13]

HaconC D, HanJ. On a connectedness principle of Shokurov-Kollár type. Sci. China Math., 2019, 62(3): 411-416.

[14]

Han, J., Liu, J. and Shokurov, V. V., ACC for minimal log discrepancies for exceptional singularities, https://doi.org/10.1007/s42543-024-00091-x.

[15]

HanJ, LiuW. On numerical nonvanishing for generalized log canonical pairs. Doc. Math., 2020, 25: 93-123.

[16]

HanJ, LiuW. On a generalized canonical bundle formula for generically finite morphisms. Annales de l’Institut Fourier, 2021, 71(5): 2047-2077.

[17]

HanJ, LuoY. On boundedness of divisors computing minimal log discrepancies for surfaces. J. Inst. Math. Jussieu, 2023, 22(6): 2907-2930.

[18]

HartshorneRAlgebraic geometry, 1997, New York-Heidelberg. Springer-Verlag. 52

[19]

Iano-FletcherA RWorking with weighted complete intersections, Explicit Birational Geometry of 3-folds, 2000, Cambridge. Cambridge Univ. Press. 281

[20]

Keel, S., and McKernan, J., Rational curves on quasi-projective surfaces, Mem. Amer. Math. Soc., 140(669), 1999.

[21]

KollárJ, MoriSBirational geometry of algebraic varieties, 1998, Cambridge. Cambridge Univ. Press. . 134

[22]

MatsumuraHCommutative ring theory, 1989, Cambridge. Cambridge Univ. Press. 8

[23]

MiyanishiM, ZhangD-Q. Gorenstein log del Pezzo surfaces of rank one. J. Algebra, 1988, 118(1): 63-64.

[24]

PetersC. On the maximal number of du Val singularities for a K3 surface. Geom. Dedicata, 2021, 214: 383-388.

[25]

ProkhorovYLectures on complements on log surfaces, 2001, Tokyo. Mathematical Society of Japan. 10

[26]

ShokurovV V. 3-fold log flips. Izv. Ross. Akad. Nauk Ser. Mat., 1992, 56: 105-203

[27]

ZhangD-Q. On Iitaka surfaces. Osaka J. Math., 1987, 46: 435-450

[28]

ZhangD-Q. Logarithmic del Pezzo surfaces of rank one with contractible boundaries. Osaka J. Math., 1988, 25(2): 461-497

[29]

ZhangD-Q. Logarithmic del Pezzo surfacees one with rational double and triple singular points. Tohoku Math. J., 1989, 41(3): 399-452. 2)

[30]

ZhangD-Q. Logarithmic Enriques surfaces. J. Math. Kyoto Univ., 1991, 31(2): 419-466

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/