The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds

Jixiang Fu , Xin Xu , Dekai Zhang

Chinese Annals of Mathematics, Series B ›› : 1 -16.

PDF
Chinese Annals of Mathematics, Series B ›› :1 -16. DOI: 10.1007/s11401-025-0033-0
Article
research-article

The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds

Author information +
History +
PDF

Abstract

This paper proves the long-time existence and uniqueness of solutions to a parabolic quaternionic Monge-Ampère type equation on compact hyperKähler manifolds. Moreover, it is shown that after normalization, the solution converges smoothly to the unique solution of the Monge-Ampère equation for (n − 1)-quaternionic psh functions.

Keywords

Quaternionic Monge-Ampère type equation / Parabolic equation / HyperKähler manifold / 53C26 / 58J35 / 32W20

Cite this article

Download citation ▾
Jixiang Fu, Xin Xu, Dekai Zhang. The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds. Chinese Annals of Mathematics, Series B 1-16 DOI:10.1007/s11401-025-0033-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AleskerS. Solvability of the quaternionic Monge-Ampère equation on compact manifolds with a flat hyperKähler metric. Adv. Math., 2013, 241: 192-219

[2]

AleskerS, ShelukhinE. A uniform estimate for general quaternionic Calabi problem (with appendix by Daniel Barlet). Adv. Math., 2017, 316: 1-52

[3]

AleskerS, VerbitskyM. Plurisubharmonic functions on hypercomplex manifolds and HKT-geometry. J. Geom. Anal., 2006, 16(3): 375-399

[4]

AleskerS, VerbitskyM. Quaternionic Monge-Ampère equation and Calabi problem for HKT-manifolds. Israel J. Math., 2010, 176: 109-138

[5]

BedulliL, GentiliG, VezzoniL. A parabolic approach to the Calabi-Yau problem in HKT geometry. Math. Z., 2022, 302(2): 917-933

[6]

Bedulli, L., Gentili, G. and Vezzoni, L., The parabolic quaternionic Calabi-Yau equation on hyperKähler manifolds, 2023, arXiv: 2303.02689.

[7]

BłockiZ. A gradient estimate in the Calabi-Yau theorem. Math. Ann., 2009, 344(2): 317-327

[8]

CaoH. Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math., 1985, 81(2): 359-372

[9]

Chu, J., C2,α regularities and estimates for nonlinear elliptic and parabolic equations in geometry, Calc. Var. Partial Differ. Equ., 55 (1), 2016, Art. 8, 20 pp.

[10]

ChuJ. The parabolic Monge-Ampère equation on compact almost Hermitian manifolds. J. Reine Angew. Math., 2020, 761: 1-24

[11]

DinewS, SrokaM. On the Alesker-Verbitsky conjecture on hyperKähler manifolds. Geom. Funct. Anal., 2023, 33(4): 875-911

[12]

FangH, LaiM, MaX. On a class of fully nonlinear flows in Kähler geometry. J. Reine Angew. Math., 2011, 653: 189-220

[13]

FuJ, WangZ, WuD. Form-type Calabi-Yau equations. Math. Res. Lett., 2010, 17(5): 887-903

[14]

FuJ, WangZ, WuD. Form-type equations on Kähler manifolds of nonnegative orthogonal bisectional curvature. Calc. Var. Partial Differ. Equ., 2015, 52(1–2): 327-344

[15]

Fu, J., Xu, X. and Zhang, D., The Monge-Ampère equation for (n−1)-quaternionic psh functions on a hyperKähler manifold, Math. Z., 307 (2), 2024, Paper No. 29, 25 pp.

[16]

GentiliG, VezzoniL. The quaternionic Calabi conjecture on abelian hypercomplex nilmanifolds viewed as tori fibrations. Int. Math. Res. Not. IMRN, 2022, 12: 9499-9528

[17]

GentiliG, VezzoniL. A remark on the quaternionic Monge-Ampère equation on foliated manifolds. Proc. Amer. Math. Soc., 2023, 151(3): 1263-1275

[18]

Gentili, G. and Zhang, J., Fully non-linear parabolic equations on compact manifolds with a flat hyperKähler metric, 2022, arXiv: 2204.12232.

[19]

Gentili, G. and Zhang, J., Fully non-linear elliptic equations on compact manifolds with a flat hyperKähler metric, J. Geom. Anal., 32 (9), 2022, Paper No. 229, 38 pp.

[20]

GillM. Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Comm. Anal. Geom., 2011, 19(2): 277-303

[21]

SongJ, WeinkoveB. On the convergence and singularities of the J-flow with applications to the Mabuchi energy. Comm. Pure Appl. Math., 2008, 61(2): 210-229

[22]

SrokaM. The C0 estimate for the quaternionic Calabi conjecture. Adv. Math., 2020, 370107237

[23]

Sroka, M., Sharp uniform bound for the quaternionic Monge-Ampère equation on hyperhermitian manifolds, 2022, arXiv: 2211.00959.

[24]

TosattiV, WangY, WeinkoveB, YangX. C2,α estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equ., 2015, 54(1): 431-453

[25]

TosattiV, WeinkoveB. The Monge-Ampère equation for (n − 1)-plurisubharmonic functions on a compact Kähler manifold. J. Amer. Math. Soc., 2017, 30(2): 311-346

[26]

YauS T. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I. Comm. Pure Appl. Math., 1978, 31(3): 339-411

[27]

ZhangJ. Parabolic quaternionic Monge-Ampère equation on compact manifolds with a flat hyperkähler metric. J. Korean Math. Soc., 2022, 59(1): 13-33

[28]

ZhengT. A parabolic Monge-Ampère type equation of Gauduchon metrics. Int. Math. Res. Not. IMRN, 2019, 17: 5497-5538

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

/