The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds
Jixiang Fu , Xin Xu , Dekai Zhang
Chinese Annals of Mathematics, Series B ›› : 1 -16.
The Parabolic Quaternionic Monge-Ampère Type Equation on HyperKähler Manifolds
This paper proves the long-time existence and uniqueness of solutions to a parabolic quaternionic Monge-Ampère type equation on compact hyperKähler manifolds. Moreover, it is shown that after normalization, the solution converges smoothly to the unique solution of the Monge-Ampère equation for (n − 1)-quaternionic psh functions.
Quaternionic Monge-Ampère type equation / Parabolic equation / HyperKähler manifold / 53C26 / 58J35 / 32W20
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
Bedulli, L., Gentili, G. and Vezzoni, L., The parabolic quaternionic Calabi-Yau equation on hyperKähler manifolds, 2023, arXiv: 2303.02689. |
| [7] |
|
| [8] |
|
| [9] |
Chu, J., C2,α regularities and estimates for nonlinear elliptic and parabolic equations in geometry, Calc. Var. Partial Differ. Equ., 55 (1), 2016, Art. 8, 20 pp. |
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Fu, J., Xu, X. and Zhang, D., The Monge-Ampère equation for (n−1)-quaternionic psh functions on a hyperKähler manifold, Math. Z., 307 (2), 2024, Paper No. 29, 25 pp. |
| [16] |
|
| [17] |
|
| [18] |
Gentili, G. and Zhang, J., Fully non-linear parabolic equations on compact manifolds with a flat hyperKähler metric, 2022, arXiv: 2204.12232. |
| [19] |
Gentili, G. and Zhang, J., Fully non-linear elliptic equations on compact manifolds with a flat hyperKähler metric, J. Geom. Anal., 32 (9), 2022, Paper No. 229, 38 pp. |
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
Sroka, M., Sharp uniform bound for the quaternionic Monge-Ampère equation on hyperhermitian manifolds, 2022, arXiv: 2211.00959. |
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg
/
| 〈 |
|
〉 |