A Note on the Convergence Along Tangential Curve Associated with Fractional Schrödinger Propagator and Boussinesq Operator

Dan Li , Junfeng Li

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (4) : 611 -632.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (4) : 611 -632. DOI: 10.1007/s11401-025-0031-2
Article
research-article

A Note on the Convergence Along Tangential Curve Associated with Fractional Schrödinger Propagator and Boussinesq Operator

Author information +
History +
PDF

Abstract

In this paper, the authors study the almost everywhere pointwise convergence problem along a class of restricted curves in ℝ × ℝ given by {(y, t): y ∈ Γ(x, t)} for each t ∈ [0, 1], where Γ(x, t) = {γ(x, t, θ): θ ∈ Θ} for a given compact set Θ in ℝ of the fractional Schrödinger propagator and Boussinesq operator. They focus on the relationship between the upper Minkowski dimension of Θ and the optimal s for which

$\mathop {\mathop {\lim }\limits_{y \in \Gamma \left( {x,t} \right)} }\limits_{\left( {y,t} \right) \to \left( {x,0} \right)} {\rm e}^{{{\rm i}{t}(\sqrt{-\Delta})^a}} f(y)=f(x), \quad \mathop {\mathop {\lim }\limits_{y \in \Gamma \left( {x,t} \right)} }\limits_{\left( {y,t} \right) \to \left( {x,0} \right)} {\cal B}_{t}f(y)=f(x), \quad {\rm a.e.},$
whenever fHs(ℝ).

Keywords

Fractional Schrödinger propagator / Boussinesq operator / Pointwise convergence / Tangential curves / Sobolev space / 42B25 / 35S10

Cite this article

Download citation ▾
Dan Li, Junfeng Li. A Note on the Convergence Along Tangential Curve Associated with Fractional Schrödinger Propagator and Boussinesq Operator. Chinese Annals of Mathematics, Series B, 2025, 46(4): 611-632 DOI:10.1007/s11401-025-0031-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BourgainJSome new estimates on oscillatory integrals, Essays on Fourier analysis in Honor of Elias M. Stein (Princeton, NJ, 1991), 1995, New Jersey. Princeton University Press. 8311242

[2]

BourgainJ. On the Schrödinger maximal function in higher dimension. Proc. Steklov Inst. Math., 2013, 280(1): 46-60

[3]

BourgainJ. A note on the Schrödinger maximal function. J. Anal. Math., 2016, 130: 393-396

[4]

BoussinesqJ. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl., 1872, 17(2): 55-108

[5]

CarberyA. Radial Fourier multipliers and associated maximal functions. Recent Progress in Fourier Analysis, 1985, 111: 49-56

[6]

CarlesonLSome analytic problems related to statistical mechanics, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland., College Park, Md., 1979), 1980, Berlin. Springer-Verlag. 545779

[7]

Cho, C. H. and Ko, H., A note on maximal estimates of generalized Schrödinger equation, arXiv: 1809. 03246vl.

[8]

ChoC H, LeeS, VargasA. Problems on pointwise convergence of solutions to the Schrödinger equation. J. Fourier Anal. Appl., 2012, 18(5): 972-994

[9]

CowlingM. Pointwise behavior of solutions to Schrödinger equations. Lect. Notes Math., 1983, 992: 83-90

[10]

DahlbergB E J, KenigC EA note on the almost everywhere behavior of solutions to the Schrödinger equation, Harmonic analysis (Minneapolis, Minn., 1981), 1982, Berlin, New York. Springer-Verlag. 205209908

[11]

DingY, NiuY. Weighted maximal estimates along curve associated with dispersive equations. Anal. Appl. (Singap.), 2017, 15(2): 225-240

[12]

Demeter, C. and Guo, S., Schrödinger maximal function estimates via the pseudoconformal transformation, arXiv: 1608.07640, 2016.

[13]

DuX, GuthL, LiX. A sharp Schrödinger maximal eatimate in ℝ2. Ann. of Math., 2017, 186(2): 607-640

[14]

Du, X., Guth, L., Li, X. and Zhang, R., Pointwise convergence of Schrödinger solutions and multilinear refined Strichartz estimates, Forum Math. Sigma., 6, 2018, 18 pp.

[15]

DuX, ZhangR. Sharp L2 estimate of Schrödinger maximal function in higher dimensions. Ann. Math., 2018, 189(3): 837-861

[16]

GrafakosLModern Fourier Analysis, 2014, New York. World Scientific Publishing.

[17]

Lee, S., On pointwise convergence of the solutions to Schrödinger equations in ℝ2, Int. Math. Res. Not., Art. ID 32597, 2006, 21 pp.

[18]

LeeS, RogersK. The Schrödinger equation along curves and the quantum harmonic oscillator. Adv. Math., 2012, 229: 1359-1379

[19]

LiD, LiJ, XiaoJ. An upbound of Hausdorff’s dimension of the divergence set of the fractional Schrödinger operator on Hs(ℝn). Acta Math. Sci. Ser. B (Engl. Ed.), 2021, 41(4): 1223-1249

[20]

Li, W. and Wang, H., On convergence properties for generalized Schrödinger operators along tangential curves, arXiv: 2111.09186v2.

[21]

Li, W., Wang, H. and Yan, D., A note on non-tangential convergence for Schrödinger operators, J. Fourier Anal. Appl., 27(4), 2021, 14 pp.

[22]

LuS, DingY, YanDSingular Integrals and Related Topics, 2007, Singapore. World Scientific Publishing.

[23]

Lucà, R. and Rogers, K., An improved necessary condition for the Schrödinger maximal estimate, arXiv: 1506.05325.

[24]

MiaoC, YangJ, ZhengJ. An improved maximal inequality for 2D fractional order Schrödinger operators. Studia Math., 2015, 230(2): 121-165

[25]

MoyuaA, VargasA, VegaL. Schrödinger maximal function and restriction properties of the Fourier transform. Internat. Math. Res. Notices, 1996, 16: 793-815

[26]

Shiraki, S., Pointwise convergence along restricted directions for the fractional Schrödinger equation, J. Fourier Anal. Appl., 26(4), 2020, 12 pp.

[27]

SjögrenP, SjölinP. Convergence properties for the time-dependent Schrödinger equation. Ann. Acad. Sci. Fenn. Ser. A I Math., 1989, 14(1): 13-25

[28]

SjölinP. Regularity of solutions to the Schrödinger equation. Duke Math. J., 1987, 55(3): 699-715

[29]

SteinE MHarmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals, 1993, Princeton, NJ. Princeton University Press.

[30]

TaoT, VargasA. A bilinear approach to cone multipliers, I, Restriction estimate. Geom. Funct. Anal., 2000, 10(1): 185-215

[31]

VegaL. Schrödinger equations: Pointwise convergence to the initial data. Proc. Amer. Math. Soc., 1988, 102(4): 874-878

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/