Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight

Ce Xu , Jianqiang Zhao

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (4) : 559 -582.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (4) : 559 -582. DOI: 10.1007/s11401-025-0029-9
Article
research-article

Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight

Author information +
History +
PDF

Abstract

Apéry-type (inverse) binomial series have appeared prominently in the calculations of Feynman integrals in recent years. In their previous work, the authors showed that a few large classes of the non-alternating Apéry-type (inverse) central binomial series can be evaluated using colored multiple zeta values of level four (i.e., special values of multiple polylogarithms at the fourth roots of unity) by expressing them in terms of iterated integrals. In this sequel, the authors will prove that for several classes of the alternating versions they need to raise the level to eight. Their main idea is to adopt hyperbolic trigonometric 1-forms to replace the ordinary trigonometric ones used in the non-alternating setting.

Keywords

Apéry-type series / Colored multiple zeta values / Binomial coefficients / Iterated integrals / 11M32 / 11B65 / 11B37 / 44A05 / 11M06 / 33B30

Cite this article

Download citation ▾
Ce Xu, Jianqiang Zhao. Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight. Chinese Annals of Mathematics, Series B, 2025, 46(4): 559-582 DOI:10.1007/s11401-025-0029-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AkhileshP. Double tails of multiple zeta values. J. Number Thy., 2017, 170: 228-249

[2]

AkhileshP. Multiple zeta values and multiple Apéry-like sums. J. Number Thy., 2021, 226: 72-138

[3]

Au, K. C., Evaluation of one-dimensional polylogarithmic integral, with applications to infinite series, arXiv: 2007.03957.

[4]

BorweinJ M, BroadhurstD J, KamnitzerJ. Central binomial sums, multiple Clausen values, and zeta values. Experiment Math., 2001, 10(1): 25-34

[5]

DavydychevA I, KalmykovM Y. New results for the epsilon-expansion of certain one-, two- and three-loop Feynman diagrams. Nucl. Phys. B, 2001, 605: 266-318

[6]

DavydychevA I, KalmykovM Y. Massive Feynman diagrams and inverse binomial sums. Nucl. Phys. B, 2004, 699: 3-64

[7]

JegerlehnerF, KalmykovM Y, VeretinO. ${\overline {\rm M}}{\overline {\rm S}}$ versus pole masses of gauge bosons II: Two-loop electroweak Fermion corrections. Nucl. Phys. B, 2003, 658: 49-112

[8]

KalmykovM Y, KniehlB A. Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters. Nucl. Phys. B, 2009, 809: 365-405arXiv: hepth/0807.0567

[9]

KalmykovM Y, WardB F L, YostS A. Multiple (inverse) binomial sums of arbitrary weight and depth and the all-order epsilon-expansion of generalized hypergeometric functions with one half-integer value of parameter. J. High Energy Phys., 2007, 2007arXiv: 0707

[10]

LeshchinerD. Some new identities for ζ(k). J. Number Theory, 1981, 13: 355-362

[11]

RacinetG. Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publ. Math. IHES, 2002, 95: 185-231(in French)

[12]

SunZ-W. New series for some special values of L-functions. Nanjing Univ. J. Math. Biquarterly, 2015, 32(2): 189-218

[13]

XuC, ZhaoJ. Apéry-type series and colored multiple zeta values. Adv. Appl. Math., 2024, 153102610

[14]

Xu, C. and Zhao, J., Apéry-type series with summation indices of mixed parities and colored multiple zeta values, I, arXiv: 2202.06195.

[15]

Xu, C. and Zhao, J., Apéry-type series with summation indices of mixed parities and colored multiple zeta values, II, arXiv: 2203.00777.

[16]

ZhaoJMultiple Zeta Functions, Multiple Polylogarithms and Their Special Values, 2016, Hackensack, NJ. World Scientific Publishing Co. Pte. Ltd.. 12

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

150

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/