Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I

Dongli Li

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (4) : 547 -558.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (4) : 547 -558. DOI: 10.1007/s11401-025-0028-x
Article
research-article

Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I

Author information +
History +
PDF

Abstract

In this paper, the author considers a general control problem about the system of thermoelasticity of type I. By introducing some unique continuation property of the corresponding adjoint system and a suitable observability inequality for an elastic equation, using compact decoupling technique and variational approach, the exact-approximate controllability of the abstract thermoelasticity of type I is obtained. Finally, the author applies her abstract result to the exact-approximate controllability of the linear system of thermoelasticity.

Keywords

Thermoelasticity / Exact-approximate controllability / Compact decoupling / 93B07 / 93B05

Cite this article

Download citation ▾
Dongli Li. Exact-Approximate Controllability of the Abstract Thermoelasticity of Type I. Chinese Annals of Mathematics, Series B, 2025, 46(4): 547-558 DOI:10.1007/s11401-025-0028-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ait Ben HassiE, BouslousH, ManiarL. Compact decoupling for thermoelasticity in irregular domains. Asymptot. Anal., 2008, 58(1–2): 47-56

[2]

AvalosG, LasieckaI. Exact-approximate boundary reachability of thermoelastic plates under variable thermal coupling. Inverse Problems, 2000, 16(4): 979-996

[3]

DauerJ P, MahmudovN I. Approximate controllability of semilinear functional equations in Hilbert spaces. J. Math. Anal. Appl., 2002, 273(2): 310-327

[4]

De TeresaL, ZuazuaE. Controllability of the linear system of thermoelastic plates. Adv. Differential Equations, 1996, 1(3): 369-402

[5]

HansenS W. Boundary control of a one-dimensional linear thermoelastic rod. SIAM J. Control Optim., 1994, 32(4): 1054-1074

[6]

HenryD, LopoesO, PerissinotttoA. On the essential spectrum of a semigroup of thermoelastictity. Nonlinear Anal. T.M.A., 1993, 21(1): 65-75

[7]

LiD. Compact decoupling for an abstract system of thermoelasticity of type III. J. Math. Anal. Appl., 2010, 370(2): 491-497

[8]

LiX, YongJOptimal Control Theory for Infinite Dimensional Systems, 1995, Boston, Massachusetts. Birkhäuser.

[9]

LiuW J. Partial exact controllability and exponential stability in higher-dimensional linear thermoelasticity. ESAIM: Control Optim. Calc. Var., 1998, 3: 23-48

[10]

PapageorgiouN S. Optimal control of nonlinear evolution inclusions. J. Optim. Theory Appl., 1990, 67(2): 321-354

[11]

RussellD L. Controllability and stabilizability theory for linear partial differential equations: Recent progress and open questions. SIAM Review, 1978, 20(4): 639-739

[12]

ZhangX. Exact controllability of the semilinear evolution systems and its application. J. Optim. Theory Appl., 2000, 107(2): 415-432

[13]

ZhouH. Approximate controllability for a class of semilinear abstract equations. SIAM J. Control Optim., 1983, 21(4): 551-555

[14]

ZuazuaE. Controllability of the linear system of thermoelasticity. J. Math. Pures Appl., 1995, 74(4): 291-315

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/