A Note on Translating Solitons to Lagrangian Mean Curvature Flows

Hongbing Qiu , Chenyu Zhu

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 443 -448.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 443 -448. DOI: 10.1007/s11401-025-0024-1
Article

A Note on Translating Solitons to Lagrangian Mean Curvature Flows

Author information +
History +
PDF

Abstract

The authors prove a rigidity result of Lagrangian translating solitons in ℝ2n, which extends the result of [Han, X. and Sun, J., Translating solitons to symplectic mean curvature flows, Ann. Global Anal. Geom., 38(2), 2010, 161–169] to higher dimension.

Keywords

Rigidity / Lagrangian translating solitons / Lagrangian angle / Mean curvature

Cite this article

Download citation ▾
Hongbing Qiu, Chenyu Zhu. A Note on Translating Solitons to Lagrangian Mean Curvature Flows. Chinese Annals of Mathematics, Series B, 2025, 46(3): 443-448 DOI:10.1007/s11401-025-0024-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Castro, I. and Lerma, A. M., Translating solitons for Lagrangian mean curvature flow in complex Euclidean plane, Internat. J. Math., 23(10), 2012, 16 pp.

[2]

CastroI, LermaA MLagrangian translators under mean curvature flow, 2015

[3]

ChenJ, LiJ. Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math., 2004, 156(1): 25-51

[4]

ChenQ, QiuH. Rigidity of self-shrinkers and translating solitons of mean curvature flows. Adv. Math., 2016, 294: 517-531

[5]

Cooper, A. A., Singularities of the Lagrangian mean curvature flow, 2015, arXiv:1505.01856.

[6]

HanX, LiJ. Translating solitons to symplectic and Lagrangian mean curvature flows. Internat. J. Math., 2009, 20(4): 443-458

[7]

HanX, SunJ. Translating solitons to symplectic mean curvature flows. Ann. Global Anal. Geom., 2010, 38(2): 161-169

[8]

HuiskenG. Flow by mean curvature of convex surfaces into spheres. J. Differential Geom., 1984, 20(1): 237-266

[9]

HuiskenG. Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom., 1990, 31(1): 285-299

[10]

JoyceD, LeeY-I, TsuiM-P. Self-similar solutions and translating solitons for Lagrangian mean curvature flow. J. Differential Geom., 2010, 84(1): 127-161

[11]

LiX, LiuY, QiaoR. A uniqueness theorem of complete Lagrangian translator in ℂ2. Manuscripta Math., 2021, 164(1–2): 251-265

[12]

NevesA. Singularities of Lagrangian mean curvature flow: Zero-Maslov class case. Invent. Math., 2007, 168(3): 449-484

[13]

NevesA, TianG. Translating solutions to Lagrangian mean curvature flow. Trans. Amer. Math. Soc., 2013, 365(11): 5655-5680

[14]

Qiu, H. B., Rigidity of symplectic translating solitons, J. Geom. Anal., 32(11), 2022, 19 pp.

[15]

Qiu, H. B., A Bernstein type result of translating solitons, Calc. Var. Partial Differential Equations, 61(6), 2022, 9 pp.

[16]

SchoenR, WolfsonJ. Minimizing area among Lagrangian surfaces: The mapping problem. J. Differential Geom., 2001, 58: 1-86

[17]

Smoczyk, K., A canonical way to deform a Lagrangian submanifold, 1996, arXiv:dg-ga/9605005.

[18]

SmoczykKThe Lagrangian mean curvature flow, 2000, Leipzig, Univ. Leipzig (Habil.-Schr.)(Der Lagrangesche mittlere Krmmungsfluss)

[19]

Smoczyk, K., Local non-collapsing of volume for the Lagrangian mean curvature flow, Calc. Var. Partial Differential Equations, 58(1), 2019, 14 pp.

[20]

SunJ. A gap theorem for translating solitons to Lagrangian mean curvature flow. Differential Geom. Appl., 2013, 31(5): 568-576

[21]

SunJ. Mean curvature decay in symplectic and Lagrangian translating solitons. Geom. Dedicata, 2014, 172: 207-215

[22]

SunJ. Rigidity results on Lagrangian and symplectic translating solitons. Commun. Math. Stat., 2015, 3(1): 63-68

[23]

WangM-T. Mean curvature flow of surfaces in Einstein four-manifolds. J. Differential Geom., 2001, 57(2): 301-338

[24]

XinY L. Translating solitons of the mean curvature flow. Calc. Var. Partial Differential Equations, 2015, 54: 1995-2016

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/