A Characterization of Finite Blaschke Products with Degree n

Cailing Yao , Bingzhe Hou , Yang Cao

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 407 -414.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 407 -414. DOI: 10.1007/s11401-025-0022-3
Article

A Characterization of Finite Blaschke Products with Degree n

Author information +
History +
PDF

Abstract

In this paper, the authors give a characterization of finite Blaschke products with degree n. The main results are: (1) An n-dimensional complex vector can be the first n Taylor coefficients of a finite Blaschke product with degree no more than n − 1 if and only if the vector induces a lower triangular Toeplitz matrix with norm 1; (2) an n-dimensional complex vector can be the first n Taylor coefficients of an inner function if and only if the vector induces a lower triangular Toeplitz matrix with norm no more than 1. Möbius transformations acting on contraction matrices play an important role in the proofs.

Keywords

Finite Blaschke products / Toeplitz matrices / Contractions / Inner functions / Taylor coefficients

Cite this article

Download citation ▾
Cailing Yao, Bingzhe Hou, Yang Cao. A Characterization of Finite Blaschke Products with Degree n. Chinese Annals of Mathematics, Series B, 2025, 46(3): 407-414 DOI:10.1007/s11401-025-0022-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AhernP, KimH O. On the mean boundary-behavior and the Taylor coefficients of an infinite Blaschke product. Mich. Math. J., 1984, 39(1): 3-14

[2]

BeurlingA. On two problems concerning linear transformations on Hilbert space. Acta Math., 1949, 81: 239-255

[3]

BrownA, HalmosP. Algebraic properties of Toeplitz operators. J. Reine Angew. Math., 1963, 213: 89-10264

[4]

DallakyanR, HovhannisyanI. On the Taylor coefficients of Blaschke and Djrbashyan products and their connecting functions. Journal of Mathematical Sciences: Advances and Applications, 2015, 31: 69-82

[5]

DouglasR, SunS, ZhengD. Multiplication operators on the Bergman space via analytic continuation. Adv. Math., 2011, 226: 541-583

[6]

DurenPTheory of Hp Spaces, 1970, New York, Academic Pressreprinted by Dover, Mineola, NY, 2000

[7]

FanK. Analytic functions of a proper contraction. Math. Z., 1978, 160: 275-290

[8]

FrostmanOPotentiel d’équilibre et capacité des ensembles avec quelques applications à la théorie des-fonctions, 1935, Lund, Lund University

[9]

GarnettJBounded Analytic Functions, 1981, New York, Academic Press

[10]

GauH-L, WuP Y. Finite Blaschke products of contractions. Linear Algebra Appl., 2003, 368: 359-370

[11]

GuoK, HuangH. On multiplication operators of the Bergman space: Similarity, unitary equivalence and reducing subspaces. J. Oper. Theory, 2011, 65(2): 355-378

[12]

GuoK, HuangH. Geometric constructions of thin Blaschke products and reducing subspace problem. Proc. Lond. Math. Soc., 2014, 109: 1050-1091

[13]

GuoK, SunS, ZhengD, ZhongC. Multiplication operators on the Bergman space via the Hardy space of the bidisk. J. Reine Angew. Math., 2009, 628: 129-168

[14]

HalmosPA Hilbert Space Problem Book, 19822New York, Springer-Verlag

[15]

NewmanD, ShapiroH. The Taylor coefficients of inner functions. Mich. Math. J., 1962, 9(3): 249-255

[16]

SchurL. Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind. J. Reine Angew. Math., 1917, 147: 205-232

[17]

SunS, ZhengD, ZhongC. Classification of reducing subspaces of a class of multiplication operators on the Bergman space via the Hardy space of the bidisk. Can. J. Math., 2010, 62: 415-438

[18]

VerbitskiiI. Taylor coefficients and LP-moduli of continuity of Blaschke products. Journal of Soviet Mathematics, 1987, 36(3): 314-319

[19]

ZhuK. Reducing subspaces for a class of multiplication operators. J. London Math. Soc., 2000, 62: 553-568

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/