Lagrange Stability and KAM Tori for Duffing Equations with Quasi-periodic Coefficients

Huining Xue , Xiaoping Yuan

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 359 -372.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 359 -372. DOI: 10.1007/s11401-025-0020-5
Article

Lagrange Stability and KAM Tori for Duffing Equations with Quasi-periodic Coefficients

Author information +
History +
PDF

Abstract

It is proved that there are many (positive Lebesgue measure) Kolmogorov-Arnold-Moser (KAM for short) tori at infinity and thus all solutions are bounded for the Duffing equations

x¨+x2n+1+j=02npi(t)xj=0
with pj(t)’s being time-quasi-periodic smooth functions.

Keywords

KAM tori / Lagrangian stability / Duffing equation / Quasi-periodic function

Cite this article

Download citation ▾
Huining Xue, Xiaoping Yuan. Lagrange Stability and KAM Tori for Duffing Equations with Quasi-periodic Coefficients. Chinese Annals of Mathematics, Series B, 2025, 46(3): 359-372 DOI:10.1007/s11401-025-0020-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MoserJStable and Random Motions in Dynamical Systems: With special emphasis on celestial mechanics, 1973, Princeton, Princeton University Press

[2]

KolmogorovA N. On conservation of conditionally periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk SSSR (N.S.), 1954, 98: 527-530

[3]

Arnol’dV I. Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the hamiltonian. Russ. Math. Surv., 1963, 18(5): 9-36

[4]

MoserJ. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. KI. II, 1962, 1962: 1-20

[5]

MorrisG. A case of boundedness of Littlewoods problem on oscillatory differential equations. Bull. Austral. Math. Soc., 1976, 14: 71-93

[6]

DieckerhoffR, ZehnderE. Boundedness of solutions via twist theorem. Ann. Scula. Norm. Sup. Pisa., 1987, 14: 79-95

[7]

LeviM. Quasi-periodic motions in superquadratic time-periodic potentials. Comm. Math. Phys., 1991, 143: 43-83

[8]

LiuB. Boundedness for solutions of nonlinear Hill’s equations with periodic forcing terms via Moser’s twist theorem. J. Diff. Eqs., 1989, 79: 304-315

[9]

LiuB. Boundedness for solutions of nonlinear periodic differential equations via Moser’s twist theorem. Acta Math. Sinica (N.S.), 1992, 8: 91-98

[10]

YuanX P. Invariant Tori of Duffing-type Equations. Advances in Math. (China), 1995, 24: 375-376

[11]

YuanX P. Invariant Tori of Duffiiig-type Equations. J. Differential Equations, 1998, 142(2): 231-262

[12]

KuksinS, PöschelJ. Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrdinger equation. Ann. of Math., 1996, 143(1): 149-179 2)

[13]

LiuB, YouJ. KAM tori for guasiperiodic forced differential equations. Proceedings of the Conference on Qualitative Theory of ODE Nanjing Daxue Xuebao Shuxue Bannian Kan, 199323-26(in Chinese)

[14]

WuY, YuanX P. On the Kolmogorov theorem for some infinite-dimensional Hamiltonian systems of short range. Nonlinear Anal., 2021, 202: 112120 34 pp

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/