Regularity of the p-Gauss Curvature Flow with Flat Sides

Genggeng Huang , Xu-Jia Wang , Yang Zhou

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 341 -358.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (3) : 341 -358. DOI: 10.1007/s11401-025-0019-y
Article

Regularity of the p-Gauss Curvature Flow with Flat Sides

Author information +
History +
PDF

Abstract

The authors study the regularity of the p-Gauss curvature flow with flat sides. In their previous paper [Huang, G. G., Wang, X.-J. and Zhou, Y., Long time regularity of the p-Gauss curvature flow with flat side, https://arxiv.org/abs/2403.12292], they obtained the regularity of the interface, namely the boundary of the flat part. In this paper, they study the regularity of the convex hypersurface near the interface.

Keywords

Gauss curvature flow / Parabolic Monge-Ampère equation / Interface / Regularity

Cite this article

Download citation ▾
Genggeng Huang, Xu-Jia Wang, Yang Zhou. Regularity of the p-Gauss Curvature Flow with Flat Sides. Chinese Annals of Mathematics, Series B, 2025, 46(3): 341-358 DOI:10.1007/s11401-025-0019-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AndrewsB. Gauss curvature flow: The fate of the rolling stones. Invent. Math., 1999, 138(1): 151-161

[2]

AndrewsB. Motion of hypersurfaces by Gauss curvature. Pacific J. Math., 2000, 195(1): 1-34

[3]

AndrewsB, ChowB, GuentherC, LangfordMExtrinsic Geometric Flows, 2020, Providence, RI, Amer. Math. Soc.206

[4]

BrendleS, ChoiK, DaskalopoulosP. Asymptotic behavior of flows by powers of the Gaussian curvature. Acta Math., 2017, 219: 1-16

[5]

ChoppD, EvansL C, IshiiH. Waiting time effects for Gauss curvature flows. Indiana Univ. Math. J., 1999, 48(1): 311-334

[6]

ChowB. Deforming convex hypersurfaces by the n-th root of the Gaussian curvature. J. Diff. Geom., 1985, 22: 117-138

[7]

DaskalopoulosP. The regularity of solutions in degenerate geometric problems. Surveys Diff. Geom., 2014, 19: 83-110

[8]

DaskalopoulosP, HamiltonR. The free boundary in the Gauss curvature flow with flat sides. J. Reine Angew. Math., 1999, 510: 187-227

[9]

DaskalopoulosP, LeeK-A. Hölder regularity of solutions of degenerate elliptic and parabolic equations. J. Func. Anal., 2003, 201(2): 341-379

[10]

DaskalopoulosP, LeeK-A. Worn stones with flat sides all time regularity of the interface. Invent. Math., 2004, 156: 445-493

[11]

DaskalopoulosP, SavinO. C1,α regularity of solutions to parabolic Monge-Ampère equations. Amer. J. Math., 2014, 134(4): 1051-1087

[12]

HamiltonR. Worn stones with flat sides, in A tribute to Ilya Bakelman. Discourses Math. Appl., 1994, 3: 69-78

[13]

Huang, G. G., Tang, L. and Wang, X.-J., Regularity of free boundary for the Monge-Ampère obstacle problem, Duke Math. J., to appear.

[14]

Huang, G. G., Wang, X.-J. and Zhou, Y., Long time regularity of the p-Gauss curvature flow with flat side, https://arxiv.org/abs/2403.12292.

[15]

JianH, WangX-J. Optimal boundary regularity for nonlinear singular elliptic equations. Adv. Math., 2014, 251: 111-126

[16]

KimL, LeeK, RheeF. α-Gauss curvature flow with flat sides. J. Diff. Eq., 2013, 254(3): 1172-1192

[17]

LiebermanG MSecond order parabolic differential equations, 1996, Singapore, World Scientific

[18]

LiebermanG M. Schauder estimates for singular parabolic and elliptic equations of Keldysh type. Discrete Contin. Dyn. Syst. Ser. B, 2016, 21: 1525-1566

[19]

TsoK. Deforming a hypersurface with prescribed Gauss-Kronecker curvature. Comm. Pure Appl. Math., 1985, 38: 867-882

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/