PDF
Abstract
For any positive integer m, let ℤm be the additive group of residue classes modulo m. For A ⊆ ℤm and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{n}\in\mathbb{Z}_{m}$$\end{document}
, let the representation function \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R_{A}(\overline{n})$$\end{document}
denote the number of solutions of the equation \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{n}=\overline{a}+\overline{a^{\prime}}$$\end{document}
with unordered pairs \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$(\overline{a},\overline{a^{\prime}})\in A\times A$$\end{document}
. Let m = 2αM > 2, where α is a positive integer and M is a positive odd integer. In this paper, the author proves that if M ≥ 3, then there exist two distinct sets A, B ⊆ ℤm with ∣A ∪ B∣ = m − 2, A ∩ B = ∅ and \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B\ne{\overline{m}\over{2}}+A$$\end{document}
such that \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R_{A}(\overline{n})=R_{B}(\overline{n})$$\end{document}
for all \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{n}\in\mathbb{Z}_{m}$$\end{document}
. The author also proves that if M = 1 and A, B ⊆ ℤm with ∣A ∪ B∣ = m − 2 and A ∩ B = ∅, then \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$R_{A}(\overline{n})=R_{B}(\overline{n})$$\end{document}
for all \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\overline{n}\in\mathbb{Z}_{m}$$\end{document}
if and only if \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$B={\overline{m}\over{2}}+A$$\end{document}
.
Keywords
Representation function
/
Residue class
Cite this article
Download citation ▾
Cuifang Sun.
Representation Functions on the Additive Group of Residue Classes.
Chinese Annals of Mathematics, Series B, 2025, 46(2): 233-240 DOI:10.1007/s11401-025-0012-5
| [1] |
ChenS Q, WangR J, YuW X. On the structure of sets in a residue class ring with the same representation function. Adv. in Appl. Math., 2023, 148: 102533
|
| [2] |
ChenS Q, YanX H. On certain properties of partitions of ℤm with the same representation function. Discrete Math., 2020, 343: 111981
|
| [3] |
ChenY G, LevV F. Integer sets with identical representation functions. Integers, 2016, 16: A36
|
| [4] |
ChenY G, TangM. Partitions of natural numbers with the same representation functions. J. Number Theory, 2009, 129: 2689-2695
|
| [5] |
ChenY G, WangB. On additive properties of two special sequences. Acta Arith., 2003, 110: 299-303
|
| [6] |
DombiG. Additive properties of certain sets. Acta Arith., 2002, 103: 137-146
|
| [7] |
KissS Z, SándorC. Partitions of the set of nonnegative integers with the same representation functions. Discrete Math., 2017, 340: 1154-1161
|
| [8] |
LevV F. Reconstructing integer sets from their representation functions. Electron. J. Combin., 2004, 11: R78
|
| [9] |
LiJ W, TangM. Partitions of the set of nonnegative integers with the same representation functions. Bull. Aust. Math. Soc., 2018, 97: 200-206
|
| [10] |
SándorC. Partitions of natural numbers and their representation functions. Integers, 2004, 4: A18
|
| [11] |
SunC F, XiongM C, YangQ H. Constructing finite sets from their representation functions. Acta Math. Hungar, 2021, 165: 134-145
|
| [12] |
TangM. Partitions of the set of natural numbers and their representation functions. Discrete Math., 2008, 308: 2614-2616
|
| [13] |
TangM. Partitions of natural numbers and their representation functions. Chinese Ann. Math. Ser A, 2016, 37: 41-46
|
| [14] |
TangM, ChenS Q. On a problem of partitions of the set of nonnegative integers with the same representation functions. Discrete Math., 2018, 341: 3075-3078
|
| [15] |
TangM, LiJ W. On the structure of some sets which have the same representation functions. Period. Math. Hungar., 2018, 77: 232-236
|
| [16] |
YanX H. On partitions of nonnegative integers and representation functions. Bull. Aust. Math. Soc., 2018, 99: 1-3
|
| [17] |
YangQ H, ChenF J. Partitions of ℤm with the same representation functions. Australas. J. Combin., 2012, 53: 257-262
|
| [18] |
YangQ H, TangM. Representation functions on finite sets with extreme symmetric differences. J. Number Theory, 2017, 180: 73-85
|
RIGHTS & PERMISSIONS
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg