A Blow-up Result for an Extensible Beam with Degenerate Nonlocal Nonlinear Damping

Vando Narciso , Fatma Ekinci , Erhan Pişkin

Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (2) : 181 -200.

PDF
Chinese Annals of Mathematics, Series B ›› 2025, Vol. 46 ›› Issue (2) : 181 -200. DOI: 10.1007/s11401-025-0010-7
Article

A Blow-up Result for an Extensible Beam with Degenerate Nonlocal Nonlinear Damping

Author information +
History +
PDF

Abstract

The results of this work deal with the existence and blow up of solutions for the following damped extensible beam with degenerate nonlocal damping and source term $u_{tt}+\Delta^{2}u-M(\Vert\nabla u \Vert^{2})\Delta u+\Vert \Delta u\Vert^{2\alpha}\vert u_{t}\vert^{\gamma}u_{t}=\vert u\vert^{\rho}u$. It is regarded as the second part of the paper by Narciso et al. (in 2023), where global existence, uniqueness and asymptotic stability of strong solutions were obtained for regular initial data in the case ∣uρu ≡ 0.

Keywords

Beam equation / Blow-up / Degenerate damping / Global and local solution

Cite this article

Download citation ▾
Vando Narciso, Fatma Ekinci, Erhan Pişkin. A Blow-up Result for an Extensible Beam with Degenerate Nonlocal Nonlinear Damping. Chinese Annals of Mathematics, Series B, 2025, 46(2): 181-200 DOI:10.1007/s11401-025-0010-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BalakrishnanA V, TaylorL WDistributed parameter nonlinear damping models for flight structures, 198989

[2]

BallJ M. Stability theory for an extensible beam. J. Diff. Eq., 1973, 14: 399-418

[3]

BallJ M. Initial-boundary value problems for an extensible beam. J. Math. Anal. Appl., 1973, 42: 61-90

[4]

BarbuV, LasieckaI, RammahaM A. On nonlinear wave eqautions with degenerate damping and source terms. Tran. Amer. Math. Soc., 2005, 357(7): 2571-2611

[5]

BergerH M. A new approach to the analysis of large deflections of plates. J. Appl. Mech., 1955, 22: 465-472

[6]

BiazuttiA C, CrippaH R. Global attractor and inertial set for the beam equation. Appl. Anal., 1994, 55: 61-78

[7]

CavalcantiM M, Domingos CavalcantiV N, Jorge SilvaM A, NarcisoV. Stability for extensible beams with a single degenerate nonlocal damping of Balakrishnan-Taylor type. J. Diff. Eq., 2021, 290: 197-222

[8]

CavalcantiM M, Domingos CavalcantiV N, Jorge SilvaM A, WeblerC M. Exponential stability for the wave equation with degenerate nonlocal weak damping. Isra. J. Math., 2017, 219: 189-213

[9]

CavalcantiM M, Domingos CavalcantiV N, MaT F. Exponential decay of the viscoelastic Euler-Bernoulli equation with a nonlocal dissipation in general domains. Diff. Integ. Eq., 2004, 17: 495-510

[10]

CavalcantiM M, Domingos CavalcantiV N, SorianoJ A. Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation. Commun. Contemp. Math., 2004, 6(5): 705-731

[11]

ChueshovI. Global attractors for a class of Kirchhoff wave models with a structural nonlinear damping. J. Abstr. Diff. Eq. Appl., 2010, 1: 86-106

[12]

ChueshovI. Long-time dynamics of Kirchhoff wave models with strong nonlinear damping. J. Diff. Eq., 2012, 252: 1229-1262

[13]

Chueshov, I. and Lasiecka, I., Long-Time Behavior of Second Order Evolution Equations with Nonlinear Damping, Mem. Amer. Math. Soc., 195(912), Providence, 2008.

[14]

ClarkH R. Elastic membrane equation in bounded and unbounded domains. Electron. J. Qual. Theory Diff. Eq., 2002, 11: 1-21

[15]

ClarkH R, RinconM A, RodriguesR D. Beam equation with weak-internal damping in domain with moving boundary. Appl. Numer. Math., 2003, 47: 139-157

[16]

DickeyR W. Free vibrations and dynamic buckling of the extensible beam. J. Math. Anal. Appl., 1970, 29: 443-454

[17]

DingP, YangZ. Longtime behavior for an extensible beam equation with rotational inertia and structural nonlinear damping. J. Math. Anal. Appl., 2021, 496(1): 124785

[18]

EdenA, MilaniA J. Exponential attractor for extensible beam equations. Nonlinearity, 1993, 6: 457-479

[19]

EisleyJ G. Nonlinear vibration of beams and rectangular plates. Z. Angew. Math. Phys., 1964, 15: 167-175

[20]

EkinciF, PişkinE. Nonexistence of global solutions for the Timoshenko equation with degenerate damping. Menemui. Mat., 2021, 43(1): 1-8

[21]

Esquivel-AvilaJ A. Dynamic analysis of a nonlinear Timoshenko equation. Abstr. Appl. Anal., 2011, 2011: 724815

[22]

Esquivel-AvilaJ A. Global attractor for a nonlinear Timoshenko equation with source terms. Math. Sci., 2013, 7(32): 1-8

[23]

GiorgiC, NasoM G, PataV, PotomkinM. Global attractors for the extensible thermoelastic beam system. J. Diff. Eq., 2009, 246: 3496-3517

[24]

Jorge SilvaM A, NarcisoV. Long-time behavior for a plate equation with nonlocal weak damping. Diff. Integ. Eq., 2014, 27(9–10): 931-948

[25]

Jorge SilvaM A, NarcisoV. Attractors and their properties for a class of nonlocal extensible beams. Discrete Contin. Dyn. Syst., 2015, 35(3): 985-1008

[26]

Jorge SilvaM A, NarcisoV. Long-time dynamics for a class of extensible beams with nonlocal nonlinear damping. Evol. Eq. Control Theory, 2017, 6(6): 437-470

[27]

Jorge SilvaM A, NarcisoV, VicenteA. On a beam model related to flight structures with nonlocal energy damping. Disc. Contin. Dyn. System, Series B, 2019, 24(7): 3281-3298

[28]

LangeH, Perla MenzalaG. Rates of decay of a nonlocal beam equation. Diff. Integ. Eq., 1997, 10(6): 1075-1092

[29]

LimacoJ, ClarkH R, FeitosaA J. Beam evolution equation with variable coeficients. Math. Meth. Appl. Sci., 2005, 28: 457-478

[30]

LiuG, Jorge SilvaM A. Attractor and their properties for a class of Kirchhoff models with integro-differential damping. Appl. Anal., 2020, 101(9): 3284-3307

[31]

MaT F, NarcisoV. Global attractor for a model of extensible beam with nonlinear damping and source terms. Nonlinear Anal., 2010, 73(10): 3402-3412

[32]

MaT F, NarcisoV, PelicerM L. Long-time behavior of a model of extensible beams with nonlinear boundary dissipations. J. Math. Anal. Appl., 2012, 396: 694-703

[33]

MedeirosL A. On a new class of nonlinear wave equations. J. Math. Anal. Appl., 1979, 69: 252-262

[34]

NarcisoV. Attractors for a plate equation with nonlocal nonlinearities. Math. Meth. Appl. Sci., 2017, 40(11): 3937-3954

[35]

NarcisoV. On a Kirchhoff wave model with nonlocal nonlinear damping. Evol. Eq. Control Theory, 2020, 9(2): 487-508

[36]

NarcisoV, EkinciF, PişkinE. On a beam model with degenerate nonlocal nonlinear damping. Evol. Eq. Control Theory, 2023, 12(2): 732-751

[37]

NiimuraT. Attractors and their stability with respect to rotational inertia for a nonlocal extensible beam equations. Disc. Contin. Dyn. Sys., 2020, 40(5): 2561-2591

[38]

PatcheuS K. On a global solution and asymptotic behaviour for the generalized damped extensible beam equation. J. Diff. Eq., 1997, 135: 299-314

[39]

PişkinE. Existence, decay and blow up of solutions for the extensible beam equation with nonlinear damping and source terms. Open Math., 2005, 13: 408-420

[40]

PişkinE, IrkılN. Blow up positive initial-energy solutions for the extensible beam equation with nonlinear damping and source terms. Ser. Math. Inform., 2016, 31(3): 645-654

[41]

PişkinE, PolatN. On the decay of solutions for a nonlinear petrovsky equation. Math. Sci. Lett., 2013, 3(1): 43-47

[42]

PişkinE, YüksekkayaH. Non-existence of solutions for a Timoshenko equations with weak dissipation. Math. Morav., 2018, 22(2): 1-9

[43]

PittsD R, RammahaM A. Global existence and non-existence theorems for nonlinear wave equations. Indiana University Math. J., 2002, 51(6): 1479-1509

[44]

RammahaM A, StreiT A. Global existence and nonexistence for nonlinear wave equations with damping and source terms. Trans. Amer. Math. Soc., 2002, 354(9): 3621-3637

[45]

TatarN E, ZaraïA. Exponential stability and blow up for a problem with Balakrishnan-Taylor damping. Demon. Math., 2011, 44(1): 67-90

[46]

Woinowsky-KriegerS. The effect of axial force on the vibration of hinged bars. J. Appl. Mech., 1950, 17: 35-36

[47]

YangZ J. On an extensible beam equation with nonlinear damping and source terms. J. Diff. Eq., 2013, 254: 3903-3927

[48]

ZaraïA, TatarN E. Global existence and polynomial decay for a problem with Balakrishnan-Taylor damping. Arch. Math., 2021, 46(3): 157-176

RIGHTS & PERMISSIONS

The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF

97

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/