PDF
Abstract
Cheng-Hu-Moruz (2017) completely classified the locally strongly convex centroaffine hypersurfaces with parallel cubic form based on the Calabi product (called the type I Calabi product for short) proposed by Li-Wang (1991).
In the present paper, the authors introduce the type II Calabi product (in case λ1 = 2λ2), complementing the type I Calabi product (in case λ1 ≠ 2λ2), and achieve a classification of the locally strongly convex centroaffine hypersurfaces in ℝn+1 with vanishing centroaffine shape operator and Weyl curvature tensor by virtue of the types I and II Calabi product.
As a corollary, 3-dimensional complete locally strongly convex centroaffine hypersurfaces with vanishing centroaffine shape operator are completely classified, which positively answers the centroaffine Bernstein problems III and V by Li-Li-Simon (2004).
Keywords
Centroaffine hypersurface
/
Centroaffine shape operator
/
Calabi product
/
Locally conformally flat
/
Calabi hypersurface
Cite this article
Download citation ▾
Miaoxin Lei, Ruiwei Xu, Peibiao Zhao.
Classification of the Conformally Flat Centroaffine Hypersurfaces with Vanishing Centroaffine Shape Operator.
Chinese Annals of Mathematics, Series B, 2025, 46(2): 163-180 DOI:10.1007/s11401-025-0009-0
| [1] |
BinderT. Relative Tchebychev hypersurfaces which are also translation hypersurfaces. Hokkaido Math. J., 2009, 38(1): 97-110
|
| [2] |
CalabiE. Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens. Michigan Math. J., 1958, 5(2): 105-126
|
| [3] |
ChengX X, HuZ J, MoruzM. Classification of the locally strongly convex centroaffine hypersurfaces with parallel cubic form. Results Math., 2017, 72(1–2): 419-469
|
| [4] |
ChengX X, HuZ J, MoruzM, VranckenL. On product affine hyperspheres in ℝn+1. Sci. China Math., 2020, 63(10): 2055-2078
|
| [5] |
ChengX X, HuZ J, VranckenL. Every centroaffine Tchebychev hyperovaloid is ellipsoid. Pacific J. Math., 2021, 315(1): 27-44
|
| [6] |
ChengX X, HuZ J, XingC. On centroaffine Tchebychev hypersurfaces with constant sectional curvature. Results Math., 2022, 77(4): 17529pp
|
| [7] |
ChengX X, HuZ J, YaoZ K. A rigidity theorem for centroaffine Chebyshev hyperovaloids. Colloq. Math., 2019, 157(1): 133-141
|
| [8] |
HuZ J, XingC. Locally conformally flat affine hyperspheres with parallel Ricci tensor. J. Math. Anal. Appl., 2023, 528(1): 12759611pp
|
| [9] |
LeiM X, XuR W. Classification of Calabi hypersurfaces in ℝn+1 with parallel Fubini-Pick tensor. J. Geom. Anal., 2024, 34(6): 16930pp
|
| [10] |
LiA-M, LiH Z, SimonU. Centroaffine Bernstein problems. Differential Geom. Appl., 2004, 20(3): 331-356
|
| [11] |
LiA-M, LiuH L, Schwenk-SchellschmidtA, et al.. Cubic form methods and relative Tchebychev hypersurfaces. Geom. Dedicata, 1997, 66(2): 203-221
|
| [12] |
LiA-M, SimonU, ZhaoG S, HuZ JGlobal Affine Differential Geometry of Hypersurfaces, 2015, Berlin, De GruyterSecond revised and extended edition
|
| [13] |
LiA-M, WangC P. Canonical centroaffine hypersurfaces in ℝn+1. Results Math., 1991, 20(3–4): 660-681
|
| [14] |
LiuH L, SimonU, WangC P. Conformal structure in affine geometry: Complete Tchebychev hypersurfaces. Abh. Math. Semin. Univ. Hambg., 1996, 66: 249-262
|
| [15] |
LiuH L, WangC P. The centroaffine Tchebychev operator. Results Math., 1995, 27(1–2): 77-92
|
| [16] |
LiuH L, WangC P. Relative Tchebychev surfaces in ℝ3. Kyushu J. Math., 1996, 50(2): 533-540
|
| [17] |
NomizuK, SasakiTAffine Differential Geometry, Geometry of Affine Immersions, 1994, Cambridge, Cambridge University Press
|
| [18] |
O’NeillB. Semi-Riemannian Geometry. With Applications to Relativity, 1983, New York, Academic Press, Inc.
|
| [19] |
PogorelovA VThe Minkowski Multidimensional Problem, 1978, Washington, DC, V. H. Winston & SonsHalsted Press, John Wiley & Sons, New York-Toronto-London
|
| [20] |
SimonU, Schwenk-SchellschmidtA, VieselHIntroduction to the Affine Differential Geometry of Hypersurfaces, 1991, Tokyo, Science University of Tokyo
|
| [21] |
SimonU, TrabelsiH, VranckenL. Complete hyperbolic Tchebychev hypersurfaces. J. Geom., 2008, 89(1–2): 148-159
|
| [22] |
WangC P. Centroaffine minimal hypersurfaces in ℝn+1. Geom. Dedicata, 1994, 51(1): 63-74
|
| [23] |
XuH Y, LiC C. On conformally flat affine hypersurfaces with pseudo-parallel cubic form. J. Geom. Phys., 2023, 187: 10477812pp
|
| [24] |
XuR W, LeiM X. Classification of Calabi hypersurfaces with parallel Fubini-Pick form. Differential Geom. Appl., 2021, 74: 10170716pp
|
| [25] |
XuR W, LiX X. On the complete solutions to the Tchebychev affine Kähler equation and its geometric significance. J. Math. Anal. Appl., 2022, 514(2): 12635118pp
|
RIGHTS & PERMISSIONS
The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg