Remarks on the Global Existence for Incompressible Navier-Stokes Equations

Sheng Wang , Zexian Zhang , Yi Zhou

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (4) : 529 -536.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (4) : 529 -536. DOI: 10.1007/s11401-024-0027-3
Article

Remarks on the Global Existence for Incompressible Navier-Stokes Equations

Author information +
History +
PDF

Abstract

In this article, the authors use the special structure of helicity for the three-dimensional incompressible Navier-Stokes equations to construct a family of finite energy smooth solutions to the Navier-Stokes equations which critical norms can be arbitrarily large.

Keywords

Navier-Stokes euqations / Helicity / Global existence / Critical norm

Cite this article

Download citation ▾
Sheng Wang, Zexian Zhang, Yi Zhou. Remarks on the Global Existence for Incompressible Navier-Stokes Equations. Chinese Annals of Mathematics, Series B, 2024, 45(4): 529-536 DOI:10.1007/s11401-024-0027-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgain J, Pavlovì N. Ill-posedness of the Navier-Stokes equations in a critical space in 3D. J. Funct. Anal., 2008, 255: 2233-2247

[2]

Cannone M, Meyer Y, Planchon F. Solutions auto-similarities to the des équations de Navier-Stokes. Séminaire sur les Équations aux Dérivées Partielles, 1993 1994

[3]

Fefferman, C. L., http://www.claymath.org/millennium/Navier-Stokes-Equations/, Accessed 1 May, 2000.

[4]

Fujita H, Kato T. On the Navier-Stokes initial value problem I. Arch. Rational Mech. Anal., 1964, 16: 269-315

[5]

Giga Y, Miyakawa T. Solutions in L r of the Navier-Stokes initial value problem. Arch. Rational Mech. Anal.., 1985, 89: 267-281

[6]

Kato T. Strong L p-solutions of the Navier-Stokes equation in ℝn. Math. Z., 1984, 187: 471-480

[7]

Koch H, Tataru D. Well-posedness for the Navier-Stokes equations. Adv. Math, 2001, 157: 22-35

[8]

Lei Z, Lin F H, Zhou Y. Structure of helicity and global solutions of incompressible Navier-Stokes equation. Arch. Rational. Mech. Anal., 2015, 218: 1417-1430

[9]

Lin, Y. R., Zhang, H. L. and Zhou, Y., Global smooth solutions of MHD equations with large data, arXiv:1512, 00646.

[10]

Robinson J C, Rodrigo J L, Sadowski W. The Three-Dimensional Navier-Stokes Equations, 2016, Cambridge: Cambridge University Press

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/