Existence of Global Solutions to the Nonlocal mKdV Equation on the Line

Anran Liu , Engui Fan

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (4) : 497 -528.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (4) : 497 -528. DOI: 10.1007/s11401-024-0026-4
Article

Existence of Global Solutions to the Nonlocal mKdV Equation on the Line

Author information +
History +
PDF

Abstract

In this paper, the authors address the existence of global solutions to the Cauchy problem for the integrable nonlocal modified Korteweg-de Vries (nonlocal mKdV for short) equation under the initial data u 0H 3(ℝ) ∩ H 1,1(ℝ) with the L 1(ℝ) small-norm assumption. A Lipschitz L 2-bijection map between potential and reflection coefficient is established by using inverse scattering method based on a Riemann-Hilbert problem associated with the Cauchy problem. The map from initial potential to reflection coefficient is obtained in direct scattering transform. The inverse scattering transform goes back to the map from scattering coefficient to potential by applying the reconstruction formula and Cauchy integral operator. The bijective relation naturally yields the existence of global solutions in a Sobolev space H 3(ℝ) ∩ H 1,1(ℝ) to the Cauchy problem.

Keywords

Nonlocal mKdV equation / Riemann-Hilbert problem / Plemelj projection operator / Lipschitz continuous / Global solutions

Cite this article

Download citation ▾
Anran Liu, Engui Fan. Existence of Global Solutions to the Nonlocal mKdV Equation on the Line. Chinese Annals of Mathematics, Series B, 2024, 45(4): 497-528 DOI:10.1007/s11401-024-0026-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M J, Musslimani Z H. Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation. Nonlinearity, 2016, 29: 915-946

[2]

Ablowitz M J, Musslimani Z H. Integrable nonlocal nonlinear equations. Stud. Appl. Math., 2017, 139: 7-59

[3]

Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry. Phys. Rev. Lett, 1998, 80: 5243-5246

[4]

Lou S Y, Huang F. Alice-Bob physics: Coherent solutions of nonlocal KdV systems. Sci. Rep., 2017, 7: 869

[5]

Tang X Y, Liang Z F, Hao X Z. Nonlinear waves of a nonlocal modified KdV equation in the atmospheric and oceanic dynamical system. Commun. Nonl. Sci. Numer. Simul., 2018, 60: 62-71

[6]

Zhang G, Yan Z. Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions. Phys. D, 2020, 402: 132170

[7]

Ji J L, Zhu Z N. On a nonlocal modified Korteweg-de Vries equation: Integrability, Darboux transformation and soliton solutions. Commun. Nonl. Sci. Numer. Simul., 2017, 42: 699

[8]

Ji J L, Zhu Z N. Soliton solutions of an integrable nonlocal modified Korteweg-de Vries equation through inverse scattering transform. J. Math. Anal. Appl., 2017, 453: 973-984

[9]

He F J, Fan E G, Xu J. Long-time asymptotics for the nonlocal mKdV equation. Commun. Theor. Phys., 2019, 71: 475-488

[10]

Deift P, Zhou X. A steepest descent method for oscillatory Riemann-Hilbert prblems, Asymptotics for the mKdV equation. Ann. Math., 1993, 137: 295-368

[11]

Zhou X, Fan E G. Long time asymptotics for the nonlocal mKdV equation with finite density initial. Phys. D, 2022, 440: 133458

[12]

Zhou X, Fan E G. Long time asymptotic behavior for the nonlocal mKdV equation in solitonic space-time regions. Math. Phys. Anal. Geom., 2023, 26: 1-53

[13]

McLaughlin, K. T. R. and Miller, P. D., The ${\bar\partial}$-steepest descent method and the asymptotic behavior of polynomials orthogonal on the unit circle with fixed and exponentially varying non-analytic weights, Int. Math. Res. Not., 2006, Art. ID 48673.

[14]

McLaughlin, K. T. R. and Miller, P. D., The ${\bar\partial}$-steepest descent method for orthogonal polynomials on the real line with varying weights, Int. Math. Res. Not., 2008, Art. ID 075.

[15]

Borghese M, Jenkins R, McLaughlin K T R. Long-time asymptotic behavior of the focusing nonlinear Schrödinger equation. Ann. I. H. Poincaré Anal., 2018, 35: 887-920

[16]

Jenkins R, Liu J, Perry P, Sulem C. Soliton resolution for the derivative nonlinear Schrödinger equation. Commun. Math. Phys., 2018, 363: 1003-1049

[17]

Liu J Q. Long-time behavior of solutions to the derivative nonlinear Schrödinger equation for soliton-free initial data. Ann. I. H. Poincaré Anal., 2018, 35: 217-265

[18]

Yang Y L, Fan E G. Soliton resolution for the short-pulse equation. J. Differ. Equ., 2021, 280: 644-689

[19]

Yang Y L, Fan E G. Long-time asymptotic behavior for the derivative Schrödinger equation with finite density type initial data. Chin. Ann. Math. Ser. B, 2022, 43: 893-948

[20]

Wang Z Y, Fan E G. The defocusing NLS equation with nonzero background: Large-time asymptotics in the solitonless region. J. Differ. Equ., 2022, 336: 334-373

[21]

Yang Y L, Fan E G. On the long-time asymptotics of the modified Camassa-Holm equation in space-time solitonic regions. Adv. Math., 2022, 402: 108340

[22]

Yang Y L, Fan E G. Soliton resolution and large time behavior of solutions to the Cauchy problem for the Novikov equation with a nonzero background. Adv. Math., 2023, 426: 109088

[23]

Wang Z Y, Fan E G. The defocusing nonlinear Schrödinger equation with a nonzero background: Painlevé asymptotics in two transition regions. Commun. Math. Phys., 2023, 402: 2879-2930

[24]

Ma R H, Fan E G. Long time asymptotics behavior of the focusing nonlinear Kundu-Eckhaus equation. Chin. Ann. Math. Ser. B, 2023, 44: 235-264

[25]

Zhou X. The Riemann-Hilbert problem and inverse scattering. SIAM J. Math. Anal., 1989, 20: 966-986

[26]

Zhou X. L 2-Sobolev space bijectivity of the scattering and inverse scattering transforms. Commun. Pure Appl. Math., 1998, 51: 697-731

[27]

Pelinovsky D E, Shimabukuro Y. Existence of global solutions to the derivative NLS equation with the inverse scattering transform method. Int. Math. Res. Not., 2018, 18: 5663-5728

[28]

Liu J Q, Perry P A, Sulem C. Global Existence for the Derivative Nonlinear Schrödinger Equation by the Method of Inverse Scattering. Commun. PDE, 2016, 41: 1692-1760

[29]

Cheng Q Y, Fan E G. The Fokas-Lenells equation on the line: Global well-posedness with solitons. J. Differ. Equ., 2023, 366: 320-344

AI Summary AI Mindmap
PDF

187

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/