Global Solvability for a Predator-Prey Model with Prey-Taxis and Rotational Flux Terms

Guoqiang Ren , Bin Liu

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (2) : 297 -318.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (2) : 297 -318. DOI: 10.1007/s11401-024-0018-4
Article

Global Solvability for a Predator-Prey Model with Prey-Taxis and Rotational Flux Terms

Author information +
History +
PDF

Abstract

In this paper the author investigates the following predator-prey model with prey-taxis and rotational flux terms $\left\{ {\matrix{{{u_t} = \Delta u - \nabla \cdot (uS(x,u,v)\nabla v) + \gamma uF(v) - uh(u),} \hfill & {x \in \Omega ,\,\,\,\,\,t > 0,} \hfill \cr {{v_t} = D\Delta v - uF(v) + f(v),} \hfill & {x \in \Omega ,\,\,\,\,\,t > 0} \hfill \cr } } \right.\,\,\,\,( * )$

in a bounded domain with smooth boundary. He presents the global existence of generalized solutions to the model (*) in any dimension.

Keywords

Predator-prey / Prey-taxis / Global existence / Rotational flux

Cite this article

Download citation ▾
Guoqiang Ren,Bin Liu. Global Solvability for a Predator-Prey Model with Prey-Taxis and Rotational Flux Terms. Chinese Annals of Mathematics, Series B, 2024, 45(2): 297-318 DOI:10.1007/s11401-024-0018-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

AI Summary AI Mindmap
PDF

223

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/