PDF
Abstract
In this paper, the authors study the integral operator ${S_\phi }f(z) = \int_{\mathbb{C}} \phi (z,\overline w )f(w){\rm{d}}{\lambda _\alpha }(w)$
induced by a kernel function ϕ(z,·) ∈ F α ∞ between Fock spaces. For 1 ≤ p ≤ ∞, they prove that S ϕ: F α 1 → F α p is bounded if and only if $\mathop {\sup }\limits_{a \in \mathbb{C}} ||{S_\phi }{k_a}|{|_{p,\alpha }} < \infty ,$
where k a is the normalized reproducing kernel of F α 2; and, S ϕ: F α 1 → F α p is compact if and only if $\mathop {lim}\limits_{|a| \to \infty } ||{S_\phi }{k_a}|{|_{p,\alpha }} = 0.$
When 1 < q ≤ ∞, it is also proved that the condition (†) is not sufficient for boundedness of S ϕ: F α q → F α p.
In the particular case $\phi (z,\overline w ) = {e^{\alpha z\overline w }}\varphi (z - \overline w )$ with φ ∈ F α 2, for 1 ≤ q < p < ∞, they show that S ϕ: F α p → F α q is bounded if and only if φ = 0; for 1 < p ≤ q < ∞, they give sufficient conditions for the boundedness or compactness of the operator S ϕ: F α p → F α q.
Keywords
Fock spaces
/
Integral operators
/
Normalized reproducing kernel
Cite this article
Download citation ▾
Yongqing Liu, Shengzhao Hou.
Integral Operators Between Fock Spaces.
Chinese Annals of Mathematics, Series B, 2024, 45(2): 265-278 DOI:10.1007/s11401-024-0016-6
| [1] |
Cao G, Li J, Shen M A boundedness cirterion for singular integral operators of convolution type on the Fock space. Adv. Math., 2020, 363: 1-33
|
| [2] |
Cascante, C, Fàbrega, J. and Pascuas, D., Boundedness of the Bergman projection on generalized Fock-Sobolev spaces on ℂn, Complex Anal. Oper. Theory, 14(2), 2020, 26 pp.
|
| [3] |
Coburn L, Isralowitz J, Li B. Toeplitz operators with BMO symbols on the Segal-Bargmann space. Trans. Amer. Math. Soc., 2011, 363(6): 3015-3030
|
| [4] |
Folland G. Harmonic Analysis in Phrase Space, 1989, Princeton, NJ: Princeton University Press
|
| [5] |
Isralowitz J, Zhu K. Toeplitz operators on the Fock space. Integral Equations Operator Theory, 2010, 66(4): 593-611
|
| [6] |
Janson S, Peetre J, Rochberg R. Hankel forms and the Fock space. Rev. Mat. Iberoam., 1987, 3(1): 61-138
|
| [7] |
Lou Z, Zhu K, Zhu S. Linear operators on Fock spaces. Integral Equations Operator Theory, 2017, 88(2): 1-14
|
| [8] |
Luecking D. Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Michigan Math. J., 1993, 40(2): 333-358
|
| [9] |
Okikiolu G O. Aspects of the Theory of Bounded Integral Operators in L p-Spaces, 1971, London: Academic
|
| [10] |
Wang X, Cao G, Zhu K. Boundedness and compactness of operators on the Fock space. Integral Equations Operator Theory, 2013, 77(3): 355-370
|
| [11] |
Zhu K. Analysis on Fock Spaces, 2012, New York: Springer-Verlag
|
| [12] |
Zhu K. Singular integral operators on the Fock space. Integral Equations Operator Theory, 2015, 81(4): 451-454
|