A Generalized Blow up Criteria with One Component of Velocity for 3D Incompressible MHD System

Bin Han , Xi Xiong

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (2) : 253 -264.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (2) : 253 -264. DOI: 10.1007/s11401-024-0015-7
Article

A Generalized Blow up Criteria with One Component of Velocity for 3D Incompressible MHD System

Author information +
History +
PDF

Abstract

In this paper, the authors study the global regularity of the 3D magnetohydrodynamics system in terms of one velocity component. In particular, they establish a new Prodi-Serrin type regularity criterion in the framework of weak Lebesgue spaces both in time and space variables.

Keywords

MHD / Regularity / Blow-up criterion

Cite this article

Download citation ▾
Bin Han, Xi Xiong. A Generalized Blow up Criteria with One Component of Velocity for 3D Incompressible MHD System. Chinese Annals of Mathematics, Series B, 2024, 45(2): 253-264 DOI:10.1007/s11401-024-0015-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abidi H, Paicu M. Global existence for the magnetohydrodynamic system in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A, 2008, 138: 447-476

[2]

Benjamin P, Yu X W. On Prodi-Serrin type conditions for the 3D Navier-Stokes equations. Non-linear Analysis: Theory Methods Applications, 2020, 190: 111612

[3]

Cao C, Regmi D, Wu J. The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion. J. Differential Equations, 2013, 254: 2661-2681

[4]

Cao C, Wu J. Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math., 2011, 226: 1803-1822

[5]

Chemin J Y, McCormick D S, Robinson J C, Rodrigo J L. Local existence for the non-resistive MHD equations in Besov spaces. Adv. Math., 2016, 286: 1-31

[6]

Chemin J Y, Zhang P. On the critical one component regularity for 3-D Navier-Stokes system. Ann. Sci. Ecole. Norm. S., 2016, 49: 131-167

[7]

Chemin J Y, Zhang P, Zhang Z. On the critical one component regularity for 3-D Navier-Stokes system: general case. Arch. Ration. Mech. Anal., 2017, 224: 871-905

[8]

Duvaut G, Lions J L. Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal., 1972, 46: 241-279

[9]

Guo X X, Du Y, Lu P. The regularity criteria on the magnetic field to the 3D incompressible MHD equations. Comm. Math. Sci., 2019, 17: 2257-2280

[10]

Han B, Zhao N. Improved blow up criterion for the three dimensional incompressible magnetohydrodynamics. Communications on Pure Applied Analysis, 2020, 19: 4455-4478

[11]

Han B, Zhao N. On the critical blow up criterion with one velocity component for 3D incompressible MHD system. Nonlinear Analysis: Real World Applications, 2020, 51: 103000

[12]

Ni L D, Guo Z G, Zhou Y. Some new regularity criteria for the 3D MHD equations. J. Math. Anal. Appl., 2012, 396: 108-118

[13]

Lemarié-Rieusset P G. Recent Developments in the Navier-Stokes Problem, 2002, Boca Raton: Chapman & Hall/CRC

[14]

Wang H, Li Y, Guo Z G, Skalak Z. Conditional regularity for the 3D incompressible MHD equations via partial components. Comm. Math. Sci., 2019, 17: 1025-1043

[15]

Yamazaki K. Regularity criteria of MHD system involving one velocity and one current density component. J. Math. Fluid Mech., 2014, 16: 551-570

[16]

Yamazaki K. Remarks on the regularity criteria of the three-dimensional magnetohydrodynamics system in terms of two velocity field components. J. Math. Phys., 2014, 55: 031505 16 pp

[17]

Yamazaki, K., Component reduction for regularity criteria of the three-dimensional magnetohydrodynamics systems, Electron. J. Differ. Equ., 98, 2014, 18 pp.

[18]

Yamazaki K. Regularity criteria of the three-dimensional MHD system involving one velocity and one vorticity component. Nonlinear Anal, 2016, 135: 73-83

[19]

Yamazaki K. On the three-dimensional magnetohydrodynamics system in scaling-invariant spaces. Bull. Sci. Math., 2016, 140: 575-614

[20]

Zhang Z. Remarks on the global regularity criteria for the 3D MHD equations via two components. Z. Angew. Math. Phys., 2015, 66: 977-987

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/