On Existence of the Even L p Gaussian Minkowski Problem for p > n

Hejun Wang

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (2) : 179 -192.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (2) : 179 -192. DOI: 10.1007/s11401-024-0011-y
Article

On Existence of the Even L p Gaussian Minkowski Problem for p > n

Author information +
History +
PDF

Abstract

This paper concerns the even L p Gaussian Minkowski problem in n-dimensional Euclidean space ℝ n. The existence of the solution to the even L p Guassian Minkowski problem for p > n is obtained.

Keywords

Convex body / Existence / L p Gaussian surface area measure / The even L p Gaussian Minkowski problem

Cite this article

Download citation ▾
Hejun Wang. On Existence of the Even L p Gaussian Minkowski Problem for p > n. Chinese Annals of Mathematics, Series B, 2024, 45(2): 179-192 DOI:10.1007/s11401-024-0011-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aleksandrov A D. On the theory of mixed volumes, III. Extension of two theorems of Minkowski on convex polyhedra to arbitrary convex bodies, 1938, 3: 27-46

[2]

Aleksandrov A D. On the surface area measure of convex bodies. Mat. Sbornik N.S., 1939, 6: 167-174

[3]

Andrews B. Evolving convex curves. Calc. Var. Partial Differential Equations, 1998, 7: 315-371

[4]

Andrews B. Gauss curvature flow: The fate of the rolling stones. Invent. Math., 1999, 138: 151-161

[5]

Böröczky K J, Fodor F. The L p dual Minkowski problem for p > 1 and q > 0. J. Differential Equations, 2019, 266: 7980-8033

[6]

Böröczky K J, Hegedűs P, Zhu G. On the discrete logarithmic Minkowski problem. Int. Math. Res. Not., 2016, 6: 1807-1838

[7]

Böröczky K J, Henk M, Pollehn H. Subspace concentration of dual curvature measures of symmetric convex bodies. J. Differential Geom., 2018, 109: 411-429

[8]

Böröczky K J, Kalantzopoulos P. Log-Brunn-Minkowski inequality under symmetry. T. AM. Math. Soc., 2022, 375(8): 5987-6013

[9]

Böröczky K J, Lutwak E, Yang D, Zhang G. The logarithmic Minkowski problem. J. Amer. Math. Soc., 2013, 26: 831-852

[10]

Böröczky K J, Lutwak E, Yang D The dual Minkowski problem for symmetric convex bodies. Adv. Math., 2019, 356: 106805 30 pp

[11]

Chen W. L p Minkowski problem with not necessarily positive data. Adv. Math., 2006, 201: 77-89

[12]

Cianchi A, Lutwak E, Yang D, Zhang G. Affine Moser-Trudinger and Morrey-Sobolev inequalities. Calc. Var. Partial Differential Equations, 2009, 36: 419-436

[13]

Chou K S, Wang X J. The L p-Minkowski problem and the Minkowski problem in centroaffine geometry. Adv. Math., 2006, 205: 33-83

[14]

Eskenazis A, Moschidis G. The dimensional Brunn-Minkowski inequality in Gauss space. J. Funct. Anal., 2021, 280(6): 108914

[15]

Fenchel W, Jessen B. Mengenfunktionen und konvexe Körper. Danske Vid. Selsk. Mat.-Fys. Medd., 1938, 16: 1-31

[16]

Gardner R J, Hug D, Xing S, Ye D. General volumes in the Orlicz-Brunn-Minkowski theory and a related Minkowski problem II. Calc. Var. Partial Differential Equations, 2020, 59(1): 33

[17]

Gardner R, Zvavitch A. Gaussian Brunn-Minkowski inequlities. Trans. Amer. Math. Soc., 2010, 362: 5333-5353

[18]

Haberl C, Lutwak E, Yang D, Zhang G. The even Orlicz Minkowski problem. Adv. Math., 2010, 224: 2485-2510

[19]

Haberl C, Schuster F E. General L p affine isoperimetric inequalities. J. Differential Geom., 2009, 83: 1-26

[20]

Haberl C, Schuster F E. Asymmetric affine L p Sobolev inequalities. J. Funct. Anal., 2009, 257: 641-658

[21]

Haberl C, Schuster F E, Xiao J. An asymmetric affine Pólya-Szegö principle. Math. Ann., 2012, 352: 517-542

[22]

Huang Y, Liu J, Xu L. On the uniqueness of L p-Minkowski problems: The constant p-curvature case in ℝ3. Adv. Math., 2015, 281: 906-927

[23]

Huang Y, Lutwak E, Yang D, Zhang G. Geometric measures in the dual Brunn-Minkowki theory and their associated Minkowski problems. Acta Math., 2016, 216: 325-388

[24]

Huang Y, Xi D, Zhao Y. The Minkowski problem in Gaussian probability space. Adv. Math., 2021, 385: 36

[25]

Hug D, Lutwak E, Yang D, Zhang G. On the L p Minkowski problem for polytopes. Discrete Comput. Geom., 2005, 33: 699-715

[26]

Jian H, Lu J, Zhu G. Mirror symmetric solutions to the centro-affine Minkowski problem. Calc. Var. Partial Differential Equations, 2016, 55(2): 55

[27]

Liu J. The L p-Gaussian Minkowski problem. Calc. Var. Partial Differential Equations, 2022, 61(1): 23

[28]

Lu J, Wang X J. Rotationally symmetric solutions to the L p-Minkowski problem. J. Differential Equations, 2013, 254: 983-1005

[29]

Lutwak E. Dual mixed volumes. Pacific J. Math., 1975, 58: 531-538

[30]

Lutwak E. The Brunn-Minkowski-Firey theory, I., Mixed volumes and the Minkowski problem. J. Differential Geom., 1993, 38: 131-150

[31]

Lutwak E, Oliker V. On the regularity of solutions to a generalization of the Minkowski problem. J. Differential Geom., 1995, 41: 227-246

[32]

Lutwak E, Yang D, Zhang G. Sharp affine L p Sobolev inequalities. J. Differential Geom., 2002, 62: 17-38

[33]

Lutwak E, Yang D, Zhang G. On the L p-Minkowski problem. Trans. Amer. Math. Soc., 2004, 356: 4359-4370

[34]

Lutwak E, Yang D, Zhang G. L p dual curvature measures. Adv. Math., 2018, 329: 85-132

[35]

Minkowski, H., Allgemeine Lehrsätze über die konvexen Polyeder, Nachr. Ges. Wiess. Göttingen, 1897, 189–219 (in German).

[36]

Minkowski H. Volumen und Oberfläche. Math. Ann., 1903, 57: 447-495 in German)

[37]

Saroglou C. More on logarithmic sums of convex bodies. Mathematika, 2016, 62: 818-841

[38]

Schneider R. Convex bodies: The Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 151, 2014, Cambridge: Cambridge Univ. Press

[39]

Stancu A. The discrete planar L 0-Minkowski problem. Adv. Math., 2002, 167: 160-174

[40]

Stancu A. On the number of solutions to the discrete two-dimensional L 0-Minkowski problem. Adv. Math., 2003, 180: 290-323

[41]

Trudinger N S, Wang X J. The Monge-Ampère equation and its geometric applications. Handbook of Geometric Analysis, 2008, Somerville, MA: Int. Press 467-524

[42]

Wang H, Fang N, Zhou J. Continuity of the solution to the even logarithmic Minkowski problem in the plane. Sci. China Math., 2019, 62: 1419-1428

[43]

Wang H, Fang N, Zhou J. Continuity of the solution to the dual Minkowski problem for negative indices. Proc. Amer. Math. Soc., 2019, 147: 1299-1312

[44]

Wang H, Lv Y. Continuity of the solution to the even L p Minkowski problem for 0 < p < 1 in the plane. Internat. J. Math., 2020, 31: 2050101 13 pp

[45]

Wang H, Zhou J. On the uniqueness and continuity of the dual area measure. J. Math. Anal. Appl., 2020, 492(1): 124383 15 pp

[46]

Wang T. The affine Sobolev-Zhang inequality on BVn. Adv. Math., 2012, 230: 2457-2473

[47]

Xing S, Ye D. On the general dual Orlicz-Minkowski problem. Indiana Univ. Math. J., 2020, 69: 621-655

[48]

Zhang G. The affine Sobolev inequality. J. Differential Geom., 1999, 53: 183-202

[49]

Zhao, Y., The dual Minkowski problem for negative indices, Calc. Var. Partial Differential Equations, 56 (2), 2017, 16 pp.

[50]

Zhao Y. Existence of solution to the even dual Minkowski problem. J. Differential Geom., 2018, 110: 543-572

[51]

Zhu B, Xing S, Ye D. The dual Orlicz-Minkowski problem. J. Geom. Anal., 2018, 28: 3829-3855

[52]

Zhu G. The logarithmic Minkowski problem for polytopes. Adv. Math., 2014, 262: 909-931

[53]

Zhu G. The centro-affine Minkowski problem for polytopes. J. Differential Geom., 2015, 101: 159-174

[54]

Zhu G. The L p Minkowski problem for polytopes for 0 < p < 1. J. Funct. Anal., 2015, 269: 1070-1094

[55]

Zhu G. The L p Minkowski problem for polytopes for p < 0. Indiana Univ. Math. J., 2017, 66: 1333-1350

[56]

Zhu G. Continuity of the solution to the L p Minkowski problem. Proc. Amer. Math. Soc., 2017, 145: 379-386

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/