∞-Tilting Subcategories in Extriangulated Categories

Zhen Zhang , Jiaqun Wei , Shance Wang

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (1) : 151 -160.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (1) : 151 -160. DOI: 10.1007/s11401-024-0008-6
Article

∞-Tilting Subcategories in Extriangulated Categories

Author information +
History +
PDF

Abstract

In this paper, the authors introduce a new definition of ∞-tilting (resp. cotilting) subcategories with infinite projective dimensions (resp. injective dimensions) in an extriangulated category. They give a Bazzoni characterization of ∞-tilting (resp. cotilting) subcategories. Also, they obtain a partial Auslander-Reiten correspondence between ∞-tilting (resp. cotilting) subcategories and coresolving (resp. resolving) subcategories with an $\mathbb{E}$-projective generator (resp. $\mathbb{E}$-injective cogenerator) in an extriangulated category.

Keywords

Extriangulated category / ∞-Tilting subcategory / Auslander-Reiten correspondence / Bazzoni characterization

Cite this article

Download citation ▾
Zhen Zhang, Jiaqun Wei, Shance Wang. ∞-Tilting Subcategories in Extriangulated Categories. Chinese Annals of Mathematics, Series B, 2024, 45(1): 151-160 DOI:10.1007/s11401-024-0008-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu J, Zhang D, Zhou P. Proper classes and Gorensteinness in extriangulated categories. J. Algebra, 2020, 551: 23-60

[2]

Hu J, Zhang D, Zhou P. Proper resolutions and Gorensteinness in extriangulated categories. Frontiers of Mathematics in China, 2021, 16: 95-117

[3]

Iyama, O., Nakaoka, H. and Palu, Y., Auslander-Reiten theory in extriangulated categories, 2018, arXiv: 1805.03776.

[4]

Liu Y, Nakaoka H. Hearts of twin cotorsion pairs on extriangulated categories. J. Algebra, 2019, 528: 96-149

[5]

Mantese F, Reiten I. Wakamatsu tilting modules. J. Algebra, 2004, 278: 532-552

[6]

Nakaoka H, Palu Y. Extriangulated categories, Hovey twin cotorsion pairs and model structures. Cah. Topol. Geom. Differ. Categ., 2019, 60(2): 117-193

[7]

Wakamatsu T. Stable equivalence for self-injective algebras and a generalization of tilting modules. J. Algebra, 1990, 134: 298-325

[8]

Zhao T, Huang Z. Phantom ideals and cotorsion pairs in extriangulated categories. Taiwanese J. Math., 2019, 23(1): 29-61

[9]

Zhou P Y, Zhu B. Triangulated quotient categories revisited. J. Algebra, 2018, 502: 196-232

[10]

Zhu B, Zhuang X. Tilting subcategories in extriangulated categories. Front. Math. China, 2020, 15(1): 225-253

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/