Well-Posedness of Stochastic Continuity Equations on Riemannian Manifolds

Luca Galimberti , Kenneth H. Karlsen

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (1) : 81 -122.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (1) : 81 -122. DOI: 10.1007/s11401-024-0005-9
Article

Well-Posedness of Stochastic Continuity Equations on Riemannian Manifolds

Author information +
History +
PDF

Abstract

The authors analyze continuity equations with Stratonovich stochasticity, $\partial \rho + {\rm{di}}{{\rm{v}}_h}\left[ {\rho \circ \left( {u(t,x) + \sum\limits_{i = 1}^N {{a_i}(x){{\dot W}_i}(t)} } \right)} \right] = 0$ defined on a smooth closed Riemannian manifold M with metric h. The velocity field u is perturbed by Gaussian noise terms Ẇ1(t), …, Ẇ N(t) driven by smooth spatially dependent vector fields a 1(x), …, a N(x) on M. The velocity u belongs to L t 1 W x 1,2 with div h u bounded in L t,x p for p > d + 2, where d is the dimension of M (they do not assume div h uL t,x ). For carefully chosen noise vector fields a i (and the number N of them), they show that the initial-value problem is well-posed in the class of weak L 2 solutions, although the problem can be ill-posed in the deterministic case because of concentration effects. The proof of this “regularization by noise” result is based on a L 2 estimate, which is obtained by a duality method, and a weak compactness argument.

Keywords

Stochastic continuity equation / Riemannian manifold / Hyperbolic equation / Non-smooth velocity field / Weak solution / Existence / Uniqueness

Cite this article

Download citation ▾
Luca Galimberti, Kenneth H. Karlsen. Well-Posedness of Stochastic Continuity Equations on Riemannian Manifolds. Chinese Annals of Mathematics, Series B, 2024, 45(1): 81-122 DOI:10.1007/s11401-024-0005-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ambrosio L. Transport equation and Cauchy problem for BV vector fields. Invent. Math., 2004, 158(2): 227-260

[2]

Amorim P, Ben-Artzi M, LeFloch P G. Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method. Methods Appl. Anal., 2005, 12(3): 291-323

[3]

Attanasio S, Flandoli F. Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise. Comm. Partial Differential Equations, 2011, 36(8): 1455-1474

[4]

Aubin T. Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, 1998, Berlin: Springer-Verlag

[5]

Bakry D. étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI, 1987, Berlin: Springer-Verlag 137-172

[6]

Beck, L., Flandoli, F., Gubinelli, M. and Maurelli, M., Stochastic ODEs and stochastic linear PDEs with critical drift: Regularity, duality and uniqueness, Electron. J. Probab., 24, Paper No. 136, 2019, 72 pp.

[7]

Ben-Artzi M, LeFloch P G. Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, 24(6): 989-1008

[8]

Besov O V, Il’in V P, Nikol’skij S M. Integral Representations of Functions and Imbedding Theorems, 1, 1978, New York: Wiley

[9]

Chow P-L. Stochastic Partial Differential Equations, Advances in Applied Mathematics, 2015 2nd. ed. Boca Raton, FL: CRC Press

[10]

Chow B, Knopf D. The Ricci Flow: An Introduction, 2004, Providence: American Mathematical Society

[11]

Davies E B. Pointwise bounds on the space and time derivatives of heat kernels. J. Operator Theory, 1989, 21(2): 367-378

[12]

de Rham G. Differentiable Manifolds, Grundlehren der Mathematischen Wissenschaften, 266, 1984, Berlin: Springer-Verlag

[13]

DiPerna R J, Lions P-L. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 1989, 98(3): 511-547

[14]

Dumas H S, Golse F, Lochak P. Multiphase averaging for generalized flows on manifolds. Ergodic Theory Dynam. Systems, 1994, 14(1): 53-67

[15]

Elliott, C. M., Hairer, M. and Scott, M. R., Stochastic partial differential equations on evolving surfaces and evolving Riemannian manifolds, 2012, arXiv:1208.5958.

[16]

Elworthy D. Geometric aspects of diffusions on manifolds, École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, 1988, Berlin: Springer-Verlag 277-425

[17]

Fang S, Li H, Luo D. Heat semi-group and generalized flows on complete Riemannian manifolds. Bull. Sci. Math., 2011, 135(6–7): 565-600

[18]

Flandoli, F., Random perturbation of PDEs and fluid dynamic models, Lecture Notes in Mathematics, 2015, Springer-Verlag, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010.

[19]

Flandoli F, Gubinelli M, Priola E. Well-posedness of the transport equation by stochastic perturbation. Invent. Math., 2010, 180(1): 1-53

[20]

Friedman A. Stochastic Differential Equations and Applications, 2006, Mineola, NY: Dover, Publicntions, Inc.

[21]

Galimberti L, Karlsen K H. Well-posedness theory for stochastically forced conservation laws on Riemannian manifolds. J. Hyperbolic Differ. Equ., 2019, 16(3): 519-593

[22]

Galimberti L, Karlsen K H. Renormalization of stochastic continuity equations on Riemannian manifolds. Stochastic Processes and their Applications, 2021, 142: 195-244

[23]

Gess B, Maurelli M. Well-posedness by noise for scalar conservation laws. Comm. Partial Differential Equations, 2018, 43(12): 1702-1736

[24]

Gess B, Smith S. Stochastic continuity equations with conservative noise. J. Math. Pures Appl. (9), 2019, 128: 225-263

[25]

Greene R E, Wu H. C approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. (4), 1979, 12(1): 47-84

[26]

Grigor’yan A. Heat Kernel and Analysis on Manifolds, 2009, Boston, MA: American Mathematical Society, Providence, Rllnter National Press

[27]

Gyöngy I. Stochastic partial differential equations on manifolds, I. Potential Anal., 1993, 2(2): 101-113

[28]

Gyöngy I. Stochastic partial differential equations on manifolds, II, Nonlinear filtering. Potential Anal., 1997, 6(1): 39-56

[29]

Holden H, Karlsen K H, Pang P H. The Hunter–Saxton equation with noise. J. Differential Equations, 2021, 270: 725-786

[30]

Kunita H. First order stochastic partial differential equations. Stochastic Analysis, North-Holland Math. Library, 1982, 32: 249-269

[31]

Kunita H. Stochastic flows and stochastic differential equations, Cambridge studies in advanced mathematics, 24, 1990, Cambridge: Cambridge University Press

[32]

Lee J M. Riemannian Manifolds, 1997, New York: Springer-Verlag

[33]

Lions P-L. Mathematical Topics in Fluid Mechanics, 1 Incompressible Models, 1996, New York: Oxford University Press

[34]

Lions P-L. Mathematical Topics in Fluid Mechanics, 2 Compressible Models, 1998, New York: Oxford University Press

[35]

Neves W, Olivera C. Wellposedness for stochastic continuity equations with Ladyzhenskaya-Prodi-Serrin condition. NoDEA Nonlinear Differential Equations Appl., 2019, 22(5): 1247-1258

[36]

Neves W, Olivera C. Stochastic continuity equations–a general uniqueness result. Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47: 631-639

[37]

Pardoux, E., Equations aux dérivées partielles stochastiques non linéaires monotones, Etude de solutions fortes de type Ito, PhD Thesis, Université Paris Sud, 1975.

[38]

Protter P. Stochastic Integration and Differential Equations, Applications of Mathematics (New York), 1990, Berlin: Springer-Verlag 21

[39]

Punshon-Smith, S., Renormalized solutions to stochastic continuity equations with rough coefficients, 2017, arXiv 1710.06041.

[40]

Punshon-Smith S, Smith S. On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions. Arch. Ration. Mech. Anal., 2018, 229(2): 627-708

[41]

Rabier, P. J., Vector-valued Morrey’s embedding theorem and Hölder continuity in parabolic problems, Electron. J. Differential Equations, 10, 2011, pages No. 10.

[42]

Revuz D, Yor M. Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 1999 3rd ed. Berlin: Springer-Verlag 293

[43]

Rossmanith J A, Bale D S, LeVeque R J. A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys., 2004, 199(2): 631-662

[44]

Seeley R T. Extension of C functions defined in a half space. Proc. Amer. Math. Soc., 1964, 15: 625-626

AI Summary AI Mindmap
PDF

254

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/