PDF
Abstract
The authors analyze continuity equations with Stratonovich stochasticity, $\partial \rho + {\rm{di}}{{\rm{v}}_h}\left[ {\rho \circ \left( {u(t,x) + \sum\limits_{i = 1}^N {{a_i}(x){{\dot W}_i}(t)} } \right)} \right] = 0$ defined on a smooth closed Riemannian manifold M with metric h. The velocity field u is perturbed by Gaussian noise terms Ẇ1(t), …, Ẇ N(t) driven by smooth spatially dependent vector fields a 1(x), …, a N(x) on M. The velocity u belongs to L t 1 W x 1,2 with div h u bounded in L t,x p for p > d + 2, where d is the dimension of M (they do not assume div h u ∈ L t,x ∞). For carefully chosen noise vector fields a i (and the number N of them), they show that the initial-value problem is well-posed in the class of weak L 2 solutions, although the problem can be ill-posed in the deterministic case because of concentration effects. The proof of this “regularization by noise” result is based on a L 2 estimate, which is obtained by a duality method, and a weak compactness argument.
Keywords
Stochastic continuity equation
/
Riemannian manifold
/
Hyperbolic equation
/
Non-smooth velocity field
/
Weak solution
/
Existence
/
Uniqueness
Cite this article
Download citation ▾
Luca Galimberti, Kenneth H. Karlsen.
Well-Posedness of Stochastic Continuity Equations on Riemannian Manifolds.
Chinese Annals of Mathematics, Series B, 2024, 45(1): 81-122 DOI:10.1007/s11401-024-0005-9
| [1] |
Ambrosio L. Transport equation and Cauchy problem for BV vector fields. Invent. Math., 2004, 158(2): 227-260
|
| [2] |
Amorim P, Ben-Artzi M, LeFloch P G. Hyperbolic conservation laws on manifolds: Total variation estimates and the finite volume method. Methods Appl. Anal., 2005, 12(3): 291-323
|
| [3] |
Attanasio S, Flandoli F. Renormalized solutions for stochastic transport equations and the regularization by bilinear multiplication noise. Comm. Partial Differential Equations, 2011, 36(8): 1455-1474
|
| [4] |
Aubin T. Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, 1998, Berlin: Springer-Verlag
|
| [5] |
Bakry D. étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée, Séminaire de Probabilités, XXI, 1987, Berlin: Springer-Verlag 137-172
|
| [6] |
Beck, L., Flandoli, F., Gubinelli, M. and Maurelli, M., Stochastic ODEs and stochastic linear PDEs with critical drift: Regularity, duality and uniqueness, Electron. J. Probab., 24, Paper No. 136, 2019, 72 pp.
|
| [7] |
Ben-Artzi M, LeFloch P G. Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2007, 24(6): 989-1008
|
| [8] |
Besov O V, Il’in V P, Nikol’skij S M. Integral Representations of Functions and Imbedding Theorems, 1, 1978, New York: Wiley
|
| [9] |
Chow P-L. Stochastic Partial Differential Equations, Advances in Applied Mathematics, 2015 2nd. ed. Boca Raton, FL: CRC Press
|
| [10] |
Chow B, Knopf D. The Ricci Flow: An Introduction, 2004, Providence: American Mathematical Society
|
| [11] |
Davies E B. Pointwise bounds on the space and time derivatives of heat kernels. J. Operator Theory, 1989, 21(2): 367-378
|
| [12] |
de Rham G. Differentiable Manifolds, Grundlehren der Mathematischen Wissenschaften, 266, 1984, Berlin: Springer-Verlag
|
| [13] |
DiPerna R J, Lions P-L. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 1989, 98(3): 511-547
|
| [14] |
Dumas H S, Golse F, Lochak P. Multiphase averaging for generalized flows on manifolds. Ergodic Theory Dynam. Systems, 1994, 14(1): 53-67
|
| [15] |
Elliott, C. M., Hairer, M. and Scott, M. R., Stochastic partial differential equations on evolving surfaces and evolving Riemannian manifolds, 2012, arXiv:1208.5958.
|
| [16] |
Elworthy D. Geometric aspects of diffusions on manifolds, École d’Été de Probabilités de Saint-Flour XV–XVII, 1985–87, 1988, Berlin: Springer-Verlag 277-425
|
| [17] |
Fang S, Li H, Luo D. Heat semi-group and generalized flows on complete Riemannian manifolds. Bull. Sci. Math., 2011, 135(6–7): 565-600
|
| [18] |
Flandoli, F., Random perturbation of PDEs and fluid dynamic models, Lecture Notes in Mathematics, 2015, Springer-Verlag, Heidelberg, 2011. Lectures from the 40th Probability Summer School held in Saint-Flour, 2010.
|
| [19] |
Flandoli F, Gubinelli M, Priola E. Well-posedness of the transport equation by stochastic perturbation. Invent. Math., 2010, 180(1): 1-53
|
| [20] |
Friedman A. Stochastic Differential Equations and Applications, 2006, Mineola, NY: Dover, Publicntions, Inc.
|
| [21] |
Galimberti L, Karlsen K H. Well-posedness theory for stochastically forced conservation laws on Riemannian manifolds. J. Hyperbolic Differ. Equ., 2019, 16(3): 519-593
|
| [22] |
Galimberti L, Karlsen K H. Renormalization of stochastic continuity equations on Riemannian manifolds. Stochastic Processes and their Applications, 2021, 142: 195-244
|
| [23] |
Gess B, Maurelli M. Well-posedness by noise for scalar conservation laws. Comm. Partial Differential Equations, 2018, 43(12): 1702-1736
|
| [24] |
Gess B, Smith S. Stochastic continuity equations with conservative noise. J. Math. Pures Appl. (9), 2019, 128: 225-263
|
| [25] |
Greene R E, Wu H. C ∞ approximations of convex, subharmonic, and plurisubharmonic functions. Ann. Sci. École Norm. Sup. (4), 1979, 12(1): 47-84
|
| [26] |
Grigor’yan A. Heat Kernel and Analysis on Manifolds, 2009, Boston, MA: American Mathematical Society, Providence, Rllnter National Press
|
| [27] |
Gyöngy I. Stochastic partial differential equations on manifolds, I. Potential Anal., 1993, 2(2): 101-113
|
| [28] |
Gyöngy I. Stochastic partial differential equations on manifolds, II, Nonlinear filtering. Potential Anal., 1997, 6(1): 39-56
|
| [29] |
Holden H, Karlsen K H, Pang P H. The Hunter–Saxton equation with noise. J. Differential Equations, 2021, 270: 725-786
|
| [30] |
Kunita H. First order stochastic partial differential equations. Stochastic Analysis, North-Holland Math. Library, 1982, 32: 249-269
|
| [31] |
Kunita H. Stochastic flows and stochastic differential equations, Cambridge studies in advanced mathematics, 24, 1990, Cambridge: Cambridge University Press
|
| [32] |
Lee J M. Riemannian Manifolds, 1997, New York: Springer-Verlag
|
| [33] |
Lions P-L. Mathematical Topics in Fluid Mechanics, 1 Incompressible Models, 1996, New York: Oxford University Press
|
| [34] |
Lions P-L. Mathematical Topics in Fluid Mechanics, 2 Compressible Models, 1998, New York: Oxford University Press
|
| [35] |
Neves W, Olivera C. Wellposedness for stochastic continuity equations with Ladyzhenskaya-Prodi-Serrin condition. NoDEA Nonlinear Differential Equations Appl., 2019, 22(5): 1247-1258
|
| [36] |
Neves W, Olivera C. Stochastic continuity equations–a general uniqueness result. Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47: 631-639
|
| [37] |
Pardoux, E., Equations aux dérivées partielles stochastiques non linéaires monotones, Etude de solutions fortes de type Ito, PhD Thesis, Université Paris Sud, 1975.
|
| [38] |
Protter P. Stochastic Integration and Differential Equations, Applications of Mathematics (New York), 1990, Berlin: Springer-Verlag 21
|
| [39] |
Punshon-Smith, S., Renormalized solutions to stochastic continuity equations with rough coefficients, 2017, arXiv 1710.06041.
|
| [40] |
Punshon-Smith S, Smith S. On the Boltzmann equation with stochastic kinetic transport: Global existence of renormalized martingale solutions. Arch. Ration. Mech. Anal., 2018, 229(2): 627-708
|
| [41] |
Rabier, P. J., Vector-valued Morrey’s embedding theorem and Hölder continuity in parabolic problems, Electron. J. Differential Equations, 10, 2011, pages No. 10.
|
| [42] |
Revuz D, Yor M. Continuous Martingales and Brownian Motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 1999 3rd ed. Berlin: Springer-Verlag 293
|
| [43] |
Rossmanith J A, Bale D S, LeVeque R J. A wave propagation algorithm for hyperbolic systems on curved manifolds. J. Comput. Phys., 2004, 199(2): 631-662
|
| [44] |
Seeley R T. Extension of C ∞ functions defined in a half space. Proc. Amer. Math. Soc., 1964, 15: 625-626
|