Time-Periodic Solutions to Quasilinear Hyperbolic Systems on General Networks

Peng Qu

Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (1) : 41 -72.

PDF
Chinese Annals of Mathematics, Series B ›› 2024, Vol. 45 ›› Issue (1) : 41 -72. DOI: 10.1007/s11401-024-0003-y
Article

Time-Periodic Solutions to Quasilinear Hyperbolic Systems on General Networks

Author information +
History +
PDF

Abstract

For quasilinear hyperbolic systems on general networks with time-periodic boundary-interface conditions with a dissipative structure, the existence and stability of the time-periodic classical solutions are discussed.

Keywords

Time-periodic solution / Quasilinear hyperbolic system / General network / Classical solution / Asymptotic stability

Cite this article

Download citation ▾
Peng Qu. Time-Periodic Solutions to Quasilinear Hyperbolic Systems on General Networks. Chinese Annals of Mathematics, Series B, 2024, 45(1): 41-72 DOI:10.1007/s11401-024-0003-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baldi P, Berti M, Haus E, Montalto R. Time quasi-periodic gravity water waves in finite depth. Invent. Math., 2018, 214(2): 739-911

[2]

Baldi, P. and Montalto, R., Quasi-periodic incompressible Euler flows in 3D, Adv. Math., 384, 2021, 74 pp.

[3]

Bourgain J. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 1995, 5(4): 629-639

[4]

Bourgain J. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math., 1998, 148(2): 363-439

[5]

Bourgain J, Wang W-M. Quasi-periodic solutions of nonlinear random Schrödinger equations. J. Eur. Math. Soc., 2008, 10(1): 1-45

[6]

Crouseilles N, Faou E. Quasi-periodic solutions of the 2D Euler equation. Asymptot. Anal., 2013, 81(1): 31-34

[7]

Feireisl E, Mucha P B, Novotný A, Pokorný M. Time-periodic solutions to the full Navier-Stokes-Fourier system. Arch. Ration. Mech. Anal., 2012, 204(3): 745-786

[8]

Iooss G, Plotnikov P I, Toland J F. Standing waves on an infinitely deep perfect fluid under gravity. Arch. Ration. Mech. Anal., 2005, 177(3): 367-478

[9]

Jin C H, Yang T. Time periodic solution for a 3-D compressible Navier-Stokes system with an external force in R 3. J. Differential Equations, 2015, 259(7): 2576-2601

[10]

Kmit I, Recke L, Tkachenko V. Classical bounded and almost periodic solutions to quasilinear first-order hyperbolic systems in a strip. J. Differential Equations, 2020, 269(3): 2532-2579

[11]

Kmit I, Recke L, Tkachenko V. Bounded and almost periodic solvability of nonautonomous quasilinear hyperbolic systems. J. Evol. Equ., 2021, 21(4): 4171-4212

[12]

Li, T.-T. and Yu, W. C., Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series, volume V, Duke University, 1985.

[13]

Pego R L. Some explicit resonating waves in weakly nonlinear gas dynamics. Stud. Appl. Math., 1988, 79(3): 263-270

[14]

Qu P. Time-periodic solutions to quasilinear hyperbolic systems with time-periodic boundary conditions. J. Math. Pures Appl., 2020, 139: 356-382

[15]

Rabinowitz P H. Free vibrations for a semilinear wave equation. Comm. Pure Appl. Math., 1978, 31(1): 31-68

[16]

Temple B, Young R. Time-periodic linearized solutions of the compressible Euler equations and a problem of small divisors. SIAM J. Math. Anal., 2011, 43(1): 1-49

[17]

Tsuda K. On the existence and stability of time periodic solution to the compressible Navier-Stokes equation on the whole space. Arch. Ration. Mech. Anal., 2016, 219(2): 637-678

[18]

Tsuge, N., Existence of a time periodic solution for the compressible Euler equation with a time periodic outer force, Nonlinear Anal. Real World Appl., 53, 2020, 22 pp.

[19]

Wayne C E. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 1990, 127(3): 479-528

[20]

Yu, H. M., Zhang, X. M. and Sun, J. W., Global existence and stability of time-periodic solution to isentropic compressible Euler equations with source term, 2022, arXiv: 2204.01939.

[21]

Yuan H R. Time-periodic isentropic supersonic Euler flows in one-dimensional ducts driving by periodic boundary conditions. Acta Math. Sci. Ser. B, 2019, 39(2): 1-10

AI Summary AI Mindmap
PDF

201

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/