Regularity and Compactness of Stationary Map-Varifold Pairs

Jiayu Li , Jie Zhou , Chaona Zhu

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 929 -944.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 929 -944. DOI: 10.1007/s11401-023-0052-7
Article

Regularity and Compactness of Stationary Map-Varifold Pairs

Author information +
History +
PDF

Abstract

The authors introduce the conception of stationary map-varifold pairs and prove a compactness result. As applications, they analyse the asymptotic structure of the pseudo tangent map of stationary harmonic maps. For stationary pair, they also get a strong convergence criterion about the map part and introduce the stratification of the singular set.

Keywords

Stationary map-varifold pairs / Regularity / Compactness

Cite this article

Download citation ▾
Jiayu Li, Jie Zhou, Chaona Zhu. Regularity and Compactness of Stationary Map-Varifold Pairs. Chinese Annals of Mathematics, Series B, 2023, 44(6): 929-944 DOI:10.1007/s11401-023-0052-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allard W. On the first variation of a varifold. Ann. of Math., 1972, 95(2): 417-491

[2]

Almgren F. Q-valued functions minimizing Dirichlet’s integral and the regularity of area minimizing rectifiable currents up to codimension two. Bull. Amer. Math. Soc., 1983, 8(2): 327-328

[3]

Bethuel F. On the singular set of stationary harmonic maps. Manuscripta Math., 1993, 78(4): 417-443

[4]

Ding W, Li J, Li W. Nonstationary weak limit of a stationary harmonic map sequence. Comm. Pure Appl. Math., 2003, 56(2): 270-277

[5]

Evans L C. Partial regularity for stationary harmonic maps into sphere. Arch. Rational Mech. Anal., 1991, 116(2): 101-113

[6]

Giaquinta M, Giusti E. The singular set of minima of certain quadratic functionals. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1984, 11(4): 45-55 no. 1

[7]

Hong M, Wang C. On the singular set of stable-stationary harmonic maps. Calc. Var. Partial Differential Equations, 1999, 9: 141-156

[8]

Li J, Tian G. A blow-up formula for stationary harmonic maps. Internat. Math. Res. Notices, 1998, 14: 735-755

[9]

Lin F. Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. of Math., 1999, 149(3): 785-829

[10]

Luckhaus S. Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J., 1988, 37(2): 349-367

[11]

Moser R. Stationary measures and rectifiability. Calc. Var. Partial Differential Equations, 2003, 17(4): 357-368

[12]

Price P. A monotonicity formula for Yang-Mills fields. Manuscripta Math, 1983, 43(2–3): 131-166

[13]

Schoen R, Uhlenbeck K. A regularity theory for harmonic maps. J. Differential Geometry, 1982, 17(2): 307-335

[14]

Schoen R, Uhlenbeck K. Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geometry, 1983, 18(2): 253-268

[15]

Simon L. Lectures on Geometric Measure Theory, 1983, Canberra: Australian National University, Centre for Mathematical Analysis 3

[16]

Simon L. Rectifiability of the singular set of energy minimizing maps. Calc. Var. Partial Differential Equations, 1995, 3(1): 1-65

[17]

Simon L. Singularities of Geometric Variational Problems, 1996, Providence, RI: American Mathematical Society 185-223 2

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/