The Dirac Equation on Metrics of Eguchi-Hanson Type II with Negative Constant Scalar Curvature

Junwen Chen , Xiaoman Xue , Xiao Zhang

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 893 -912.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 893 -912. DOI: 10.1007/s11401-023-0050-9
Article

The Dirac Equation on Metrics of Eguchi-Hanson Type II with Negative Constant Scalar Curvature

Author information +
History +
PDF

Abstract

On metrics of Eguchi-Hanson type II with negative constant Ricci curvatures, the authors show that there is no nontrivial Killing spinor. On metrics of Eguchi-Hanson type II with negative constant scalar curvature, they show that there is no nontrivial L p eigenspinor for 0 < p < 2 if the eigenvalue has nontrivial real part, and no nontrivial L 2 eigenspinor if either the eigenvalue has trivial real part or the eigenvalue is real, the eigenspinor is isotropic and the parameter η in radial and angular equations for eigenspinors is real. They also solve harmonic spinors and eigenspinors explicitly on metrics of Eguchi-Hanson type II with certain special potentials.

Keywords

Metric of Eguchi-Hanson type II / Killing spinor / Eigenspinor

Cite this article

Download citation ▾
Junwen Chen, Xiaoman Xue, Xiao Zhang. The Dirac Equation on Metrics of Eguchi-Hanson Type II with Negative Constant Scalar Curvature. Chinese Annals of Mathematics, Series B, 2023, 44(6): 893-912 DOI:10.1007/s11401-023-0050-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baum H. Complete Riemannian manifolds with imaginary Killing spinors. Ann. Global Anal. Geom., 1989, 7: 205-226

[2]

Bunke U. The spectrum of the Dirac operator on the hyperbolic space. Math. Nachr., 1991, 153: 179-190

[3]

Cai Z H, Zhang X. The Dirac equation on metrics of Eguchi-Hanson type. Commun. Theor. Phys., 2023, 75: 055002

[4]

Chandrasekhar S. The solution of Dirac equation in Kerr geometry. Proc. R. Soc. A, 1976, 349: 571-575

[5]

Chen J W, Zhang X. Metrics of Eguchi-Hanson types with the negative constant scalar curvature. J. Geom. Phys., 2021, 161: 104010

[6]

Eguchi T, Hanson A J. Asymptotically flat self-dual solutions to Euclidean gravity. Phys. Lett., 1978, 74B: 249-251

[7]

Eguchi T, Hanson A J. Self-dual solutions to Euclidean gravity. Ann. Phys., 1979, 120: 82-106

[8]

Finster F, Kamran N, Smoller J, Yau S T. Nonexistence of time-eriodic solutions of the Dirac equation in an axisymmetric black hole geometry. Pure Appl. Math., 2000, 53: 902-929

[9]

Ginoux N. The Dirac Spectrum, 2009, Berlin: Springer-Verlag

[10]

Goette S, Semmelmann U. The point spectrum of the Dirac operator on noncompect symmetric spaces. Proc. Amer. Math. Soc., 2002, 130: 915-923

[11]

Hawking S W, Pope C N. Symmetry breaking by instantons in supergravity. Nuclear Phys. B, 1978, 146: 381-392

[12]

Kristensson G. Second Order Differential Equations: Special Functions and Their Classification, 2010, New York: Springer-Verlag

[13]

Lawson H B, Michelson M L. Spin Geometry, 1989, Princeton: Princeton Univ. Press

[14]

LeBrun C. Counter-examples to the generalized positive action conjecture. Commun. Math. Phys., 1988, 118: 591-596

[15]

Sucu Y, Ünal N. Dirac equation in Euclidean Newman-Penrose formalism with applications to instanton metrics. Class. Quantum Grav., 2004, 21: 1443-1451

[16]

Wang Y H, Zhang X. Nonexistence of time-periodic solutions of the Dirac equation in non-extreme Kerr-Newman-AdS spacetime. Sci. China Math., 2018, 61: 73-82

[17]

Zhang X. Scalar flat metrics of Eguchi-Hanson type. Commun. Theor. Phys., 2004, 42: 235-237

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/