Survey on Path-Dependent PDEs

Shige Peng , Yongsheng Song , Falei Wang

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 837 -856.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 837 -856. DOI: 10.1007/s11401-023-0048-3
Article

Survey on Path-Dependent PDEs

Author information +
History +
PDF

Abstract

In this paper, the authors provide a brief introduction of the path-dependent partial di.erential equations (PDEs for short) in the space of continuous paths, where the path derivatives are in the Dupire (rather than Fréchet) sense. They present the connections between Wiener expectation, backward stochastic di.erential equations (BSDEs for short) and path-dependent PDEs. They also consider the well-posedness of path-dependent PDEs, including classical solutions, Sobolev solutions and viscosity solutions.

Keywords

Path-Dependent / Wiener expectation / BSDEs / Classical solution / Sobolev solution / Viscosity solution

Cite this article

Download citation ▾
Shige Peng, Yongsheng Song, Falei Wang. Survey on Path-Dependent PDEs. Chinese Annals of Mathematics, Series B, 2023, 44(6): 837-856 DOI:10.1007/s11401-023-0048-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barrasso A, Russo F. Decoupled mild solutions of path-dependent PDEs and Integro PDEs represented by BSDEs driven by cadlag martingales. Potential Anal., 2020, 53: 449-481

[2]

Cont R, Fournié D-A. Change of variable formulas for non-anticipative functionals on path space. J. Funct. Anal., 2010, 259: 1043-1072

[3]

Cont R, Fournié D-A. A functional extension of the Itô formula. C. R. Math. Acad. Sci. Paris, 2010, 348: 57-61

[4]

Cont R, Fournié D-A. Functional Ito calculus and stochastic integral representation of martingales. Ann. Probab., 2013, 41: 109-133

[5]

Cosso, A., Gozzi, F., Rosestolato, M. and Russo, F., Path-dependent Hamilton-Jacobi-Bellman equation: Uniqueness of Crandall-Lions viscosity solutions, 2021, arXiv: 2107.05959.

[6]

Cosso A, Russo F A. Strong-viscosity solutions: Semilinear parabolic PDEs and path-dependent PDEs. Osaka J. Math., 2019, 56: 323-373

[7]

Cosso A, Russo F. Crandall-Lions viscosity solutions for path-dependent PDEs: The case of heat equation. Bernoulli, 2022, 28: 481-503

[8]

Crandall M G, Ishii H, Lions P L. User’s guide to viscosity solutions of second order partial differential equations. Bulletin of The American Mathematical Society, 1992, 27(1): 1-67

[9]

Crandall M G, Lions P L. Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 1983, 277: 1-42

[10]

Dupire, B., Functional Ito calculus, Portfolio Research Paper 2009-04, 2009, Bloomberg.

[11]

Ekren I, Keller C, Touzi N, Zhang J. On viscosity solutions of path dependent PDEs. Ann. Probab., 2014, 42: 204-236

[12]

Ekren I, Touzi N, Zhang J. Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part I. Ann. Probab., 2016, 44: 1212-1253

[13]

Ekren I, Touzi N, Zhang J. Viscosity solutions of fully nonlinear parabolic path dependent PDEs: Part II. Ann. Probab., 2016, 44: 2507-2553

[14]

Fleming W H, Soner H M. Control Markov Processes and Viscosity Solutions, 1992, New York: Springer-Verlag

[15]

Hu M, Ji S, Peng S, Song Y. Backward stochastic differential equations driven by G-Brownian motion. Stochastic Process. Appl., 2014, 124: 759-784

[16]

Kromer E, Overbeck L, Röder J A L. Path-dependent BSDEs with jumps and their connection to PPIDEs. Stoch. Dyn., 2017, 17(5): 1750036, 37pp

[17]

Leao D, Ohashi A, Simas A B. A weak version of path-dependent functional Ito calculus. Ann. Probab., 2018, 46(6): 3399-3441

[18]

Lions P L. Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions, I, The case of bounded stochastic evolutions. Acta Math., 1988, 161(3–4): 243-278

[19]

Lions P L. Da Prato G, Tubaro L. Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions, II, Optimal control of Zakai’s equation. Stochastic Partial Differential Equations and Applications, II, 1989, Berlin: Springer-Verlag 147-170

[20]

Lions P L. Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions, III, Uniqueness of viscosity solutions for general second-order equations. J. Funct. Anal., 1989, 86(1): 1-18

[21]

Lukoyanov, N. Y., On viscosity solution of functional Hamilton-Jacobi type equations for hereditary systems, Proceedings of the Steklov Institute of Mathematics, Suppl. 2, 2007, 190–200.

[22]

Pardoux E, Peng S. Adapted solution of a backward stochastic differential equation. Systems Control Lett., 1990, 14(1): 55-61

[23]

Pardoux E, Peng S. Rozuvskii B L, Sowers R B. Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic partial differential equations and their applications, 1992, Berlin, Heidelberg, New York: Springer-Verlag 200-217

[24]

Peng S. Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stochastics Rep., 1991, 37(1–2): 61-74

[25]

Peng S. Nonlinear expectations and nonlinear Markov chain.. Chin. Ann. Math. B, 2005, 26: 159-184

[26]

Peng S. G-expectation, G-Brownian motion and related stochastic calculus of Ito type. Stochastic Analysis and Applications, 2007, Berlin: Springer-Verlag 541-567

[27]

Peng S. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Process. Appl., 2008, 118(12): 2223-2253

[28]

Peng S. Backward stochastic differential equation, nonlinear expectation and their applications. Proceedings of the International Congress of Mathematicians, 2010, New Delhi: Hindustan Book Agency 393-432 Volume I

[29]

Peng S. Nonlinear Expectations and Stochastic Calculus under Uncertainty, 2019, Berlin, Heidelberg: Springer-Verlag

[30]

Peng, S., Note on viscosity solution of path-dependent PDE and G-martingales-2nd version, 2012, arXiv:1106.1144v2.

[31]

Peng S, Song Y. G-expectation weighted sobolev spaces, backward SDE and path dependent PDE. J. Math. Soc. Japan, 2015, 67(4): 1725-1757

[32]

Peng S, Wang F. BSDE, path-dependent PDE and nonlinear Feynman-Kac formula. Sci. China Math., 2016, 59(1): 19-36

[33]

Ren Z. Viscosity solutions of fully nonlinear elliptic path dependent partial differential equations. Ann. Appl. Probab., 2016, 26: 3381-3414

[34]

Ren Z. Perron’s method for viscosity solutions of semilinear path dependent PDEs. Stochastics, 2017, 89(6–7): 843-867

[35]

Ren Z, Touzi N, Zhang J. Crisan D, Hambly B, Zariphopoulou T. An overview on viscosity solutions of path-dependent PDEs. Stochastic Analysis and Applications 2014, 2014, New York: Springer-Verlag 397-453

[36]

Ren Z, Touzi N, Zhang J. Comparison of viscosity solutions of fully nonlinear degenerate parabolic Path-dependent PDEs. SIAM J. Math. Anal., 2017, 49: 4093-4116

[37]

Song Y. Properties of G-martingales with finite variation and the application to G-Sobolev spaces. S-tochastic Process. Appl., 2019, 129(6): 2066-2085

[38]

Tang S, Zhang F. Path-dependent optimal stochastic control and viscosity solution of associated Bellman equations. Discrete Cont. Dyn. Syst. -A, 2015, 35(11): 5521-5553

[39]

Viens F, Zhang J. A martingale approach for fractional Brownian motions and related path dependent PDEs. Ann. Appl. Probab., 2019, 29: 3489-3540

[40]

Wang F. BSDEs with jumps and path-dependent parabolic integro-differential equations. Chinese Ann. Math. Ser. B., 2015, 36(4): 625-644

[41]

Wiener N. Differential space. J. Math. Phys., 1923, 2: 132-174

[42]

Yong J, Zhou X. Stochastic Controls: Hamiltonian Systems and HJB Equations, 1999, New York: Springer-Verlag

[43]

Zhang J. Backward stochastic differential equations. From linear to fully nonlinear theory, 2017, New York: Springer-Verlag

[44]

Zhou, J., Viscosity solutions to second order path-dependent Hamilton-Jacobi-Bellman equations and applications, Ann. Appl. Probab., 2023 (in press).

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/