Pseudo-Effective Vector Bundles with Vanishing First Chern Class on Astheno-Kähler Manifolds

Yong Chen , Xi Zhang

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 819 -826.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (6) : 819 -826. DOI: 10.1007/s11401-023-0046-5
Article

Pseudo-Effective Vector Bundles with Vanishing First Chern Class on Astheno-Kähler Manifolds

Author information +
History +
PDF

Abstract

Let E be a holomophic vector bundle over a compact Astheno-Kähler manifold (M, ω). The authors would prove that E is a numerically flat vector bundle if E is pseudo-effective and the first Chern class $c_1^{BC}$ (E) is zero.

Keywords

Pseudo-effective / Astheno-Kähler / Numerically flatness

Cite this article

Download citation ▾
Yong Chen, Xi Zhang. Pseudo-Effective Vector Bundles with Vanishing First Chern Class on Astheno-Kähler Manifolds. Chinese Annals of Mathematics, Series B, 2023, 44(6): 819-826 DOI:10.1007/s11401-023-0046-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aeppli A. On the cohomology structure of Stein manifolds, 1965, Berlin: Springer-Verlag 5870

[2]

Bott R, Chern S S. Hermitian vector bundles and the equidistribution of the zeroes of their holomorphic sections. Acta Math., 1965, 114: 71-112

[3]

Boucksom S, Demailly J-P, Paun M, Peternell T. The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension. J. Algebraic Geom., 2013, 22(2): 201-248

[4]

Campana, F., Cao, J. Y. and Matsumura, S., Projective klt pairs with nef anti-canonical divisor, 2019, arXiv:1910.06471.

[5]

Chen Y. A note on pseudo-effective vector bundles with vanishing first Chern number over non-Kähler manifolds. C. R. Math. Acad. Sci. Paris, 2021, 359: 523-531

[6]

Demailly J-P. Hulek K, Peternell T, Schneider M, Schreyer F. Singular hermitian metrics on positive line bundles. Proc. Conf. Complex Algebraic Varieties (Bayreuth, April 26, 1990), 1992, Berlin: Springer-Verlag

[7]

Demailly, J.-P., Complex Analytic and Differential Geometry, https://www-fourier.ujf-grenoble.fr/demailly/manuscripts/agbook.pdf, 2012.

[8]

Demailly J-P, Peternell T, Schneider M. Compact complex manifolds with numerically effective tangent bundles. J. Algebraic Geom., 1994, 3(2): 295-345

[9]

Diverio S. Segre forms and Kobayashi-Lübke inequality. Math. Z., 2016, 283(3–4): 1033-1047

[10]

Gauduchon P. Letheoreme de lexcentricite nulle. C. R. Acad. Sci. Paris Ser. A-B, 1977, 285: A387-A390

[11]

Guler D. On Segre forms of positive vector bundles. Canad. Math. Bull., 2012, 55(1): 108-113

[12]

Hosono G, Iwai M, Matsumura S. On projective manifolds with pseudo-effective tangent bundle. J. Inst. Math. Jussieu, 2021, 21(5): 1801-1830

[13]

Jost J, Yau S T. A nonlinear elliptic system for maps from Hermitian to Riemannian manifolds and rigidity theorems in Hermitian geometry. Acta Math., 1993, 170: 221-254

[14]

Li C, Nie Y C, Zhang X. Numerically flat holomorphic bundles over non-Kähler manifolds. J. Reine Angew. Math., 2022, 790: 267-285

[15]

Wu, X. J., Strongly pseudo-effective and numerically flat reflexive sheaves, J. Geom. Anal., 32(4), 2022, 61 pp.

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/