Homogenization with the Quasistatic Tresca Friction Law: Qualitative and Quantitative Results

Changqing Ye , Eric T. Chung , Jun-zhi Cui

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (5) : 781 -802.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (5) : 781 -802. DOI: 10.1007/s11401-023-0044-7
Article

Homogenization with the Quasistatic Tresca Friction Law: Qualitative and Quantitative Results

Author information +
History +
PDF

Abstract

Modeling of frictional contacts is crucial for investigating mechanical perforances of composite materials under varying service environments. The paper considers a linear elasticity system with strongly heterogeneous coefficients and quasistatic Tresca friction law, and studies the homogenization theories under the frameworks of H-convergence and small ε-periodicity. The qualitative result is based on H-convergence, which shows the original oscillating solutions will converge weakly to the homogenized solution, while the author’s quantitative result provides an estimate of asymptotic errors in H 1-norm for the periodic homogenization. This paper also designs several numerical experiments to validate the convergence rates in the quantitative analysis.

Keywords

Homogenization / Frictional contact mechanics / Quasistatic Tresca friction law

Cite this article

Download citation ▾
Changqing Ye, Eric T. Chung, Jun-zhi Cui. Homogenization with the Quasistatic Tresca Friction Law: Qualitative and Quantitative Results. Chinese Annals of Mathematics, Series B, 2023, 44(5): 781-802 DOI:10.1007/s11401-023-0044-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allaire G. Homogenization and two-scale convergence. SIAM Journal on Mathematical Analysis, 1992, 23(6): 1482-1518

[2]

Allaire G, Conca C. Bloch wave homogenization and spectral asymptotic analysis. Journal de Mathématiques Pures et Appliquées. Neuvième Série, 1998, 77(2): 153-208

[3]

Altmann R, Henning P, Peterseim D. Numerical homogenization beyond scale separation. Acta Numerica, 2021, 30: 1-86

[4]

Armstrong S, Kuusi T, Mourrat J-C. Quantitative Stochastic Homogenization and Large-Scale Regularity. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2019, Cham: Springer-Verlag 352

[5]

Avellaneda M, Lin F-H. Compactness methods in the theory of homogenization. Communications on Pure and Applied Mathematics, 1987, 40(6): 803-847

[6]

Babuška I, Lipton R. Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Modeling & Simulation, 2011, 9(1): 373-406

[7]

Babuska I, Lipton R, Sinz P, Stuebner M. Multiscale-spectral GFEM and optimal oversampling. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112960

[8]

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Steven Benson, Jed Brown, Peter Brune, Kris Buschelman, Emil M. Constantinescu, Lisandro Dalcin, Alp Dener, Victor Eijkhout, William D. Gropp, Václav Hapla, Tobin Isaac, Pierre Jolivet, Dmitry Karpeev, Dinesh Kaushik, Matthew G. Knepley, Fande Kong, Scott Kruger, Dave A. May, Lois Curfman McInnes, Richard Tran Mills, Lawrence Mitchell, Todd Munson, Jose E. Roman, Karl Rupp, Patrick Sanan, Jason Sarich, Barry F. Smith, Stefano Zampini, Hong Zhang, Hong Zhang and Junchao Zhang, PETSc Web page, 2022.

[9]

Bensoussan, A., Lions, J.-L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structures, AMS Chelsea Publishing, Providence, RI, 2011, Corrected reprint of the 1978 original [MR0503330].

[10]

Braides A. Γ-convergence for Beginners, 2002, Oxford: Oxford University Press volume 22 of

[11]

Brezis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, 2011, New York: Springer-Verlag

[12]

Chiadà Piat V, Dal Maso G, Defranceschi A. G-convergence of monotone operators. Annales de l’Institut Henri Poincaré C. Analyse Non Linéaire, 1990, 7(3): 123-160

[13]

Chung E T, Efendiev Y, Hou T Y. Adaptive multiscale model reduction with generalized multiscale finite element methods. Journal of Computational Physics, 2016, 320: 69-95

[14]

Chung E T, Efendiev Y, Leung W T. Constraint energy minimizing generalized multiscale finite element method. Computer Methods in Applied Mechanics and Engineering, 2018, 339: 298-319

[15]

Cioranescu D, Damlamian A, Griso G. Periodic unfolding and homogenization. Comptes Rendus Mathématique. Académie des Sciences. Paris, 2002, 335(1): 99-104

[16]

Cioranescu D, Damlamian A, Griso G. The periodic unfolding method in homogenization. SIAM Journal on Mathematical Analysis, 2008, 40(4): 1585-1620

[17]

Cioranescu D, Donato P. An Introduction to Homogenization, 1999, New York: The Clarendon Press, Oxford University Press volume 17 of

[18]

Conca C, Vanninathan M. Homogenization of periodic structures via Bloch decomposition. SIAM Journal on Applied Mathematics, 1997, 57(6): 1639-1659

[19]

Cui J-Z. On problems of elastic contact with initial gaps. Chinese Journal of Theoretical and Applied Mechanics, 1980, 16: 261-268 (in Chinese)

[20]

Cui J-Z, Li G-R, Li G-Z Adey R A The variational inequality method on contact problems and its application software. Engineering Software III, 1983, Heidelberg: Springer-Verlag Berlin 387-400

[21]

Dal Maso G. An Introduction to Γ-Convergence, 1993, Boston, MA: Birkhäuser, Boston, Inc. volume 8 of

[22]

Eck C, Jarušek J, Krbec M. Unilateral Contact Problems, 2005, Boca Raton, FL: Chapman & Hall/CRC volume 270 of

[23]

Efendiev Y, Galvis J, Hou T Y. Generalized multiscale finite element methods (GMsFEM). Journal of Computational Physics, 2013, 251: 116-135

[24]

Engquist B, Souganidis P E. Asymptotic and numerical homogenization. Acta Numerica, 2008, 17: 147-190

[25]

Gasiński L, Papageorgiou N S. Nonlinear Analysis, 2006, Boca Raton, FL: Chapman Hall/CRC volume 9 of

[26]

Geng J, Zhuge J P. Oscillatory integrals and periodic homogenization of Robin boundary value problems. SIAM Journal on Mathematical Analysis, 2020, 52(1): 104-134

[27]

Gérard-Varet D, Masmoudi N. Homogenization and boundary layers. Acta Mathematica, 2012, 209(1): 133-178

[28]

Gloria A, Otto F. Quantitative results on the corrector equation in stochastic homogenization. Journal of the European Mathematical Society (JEMS), 2017, 19(11): 3489-3548

[29]

Gustafsson B, Mossino J. A criterion for H-convergence in elasticity. Asymptotic Analysis, 2007, 51(3–4): 247-269

[30]

Han W M, Reddy B D. Plasticity, 1999, New York: Springer-Verlag volume 9 of

[31]

Han W M, Sofonea M. Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity, 2002, Providence, RI: American Mathematical Society volume 30 of

[32]

Jikov V V, Kozlov S M, Oleĭnik O A. Homogenization of Differential Operators and Integral Functionals, 1994, Berlin: Springer-Verlag

[33]

Kenig C E, Lin F H, Shen Z W. Homogenization of elliptic systems with Neumann boundary conditions. Journal of the American Mathematical Society, 2013, 26(4): 901-937

[34]

Kikuchi N, Oden J T. Contact Problems in Elasticity: Astudy of Variational Inequalities and Finite Element Methods, 1988, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) volume 8 of

[35]

Klarbring A, Mikelić A, Shillor M. Frictional contact problems with normal compliance. International Journal of Engineering Science, 1988, 26(8): 811-832

[36]

Liu Z H, Migórski S, Ochal A. Homogenization of boundary hemivariational inequalities in linear elasticity. Journal of Mathematical Analysis and Applications, 2008, 340(2): 1347-1361

[37]

Lukkassen D, Nguetseng G, Wall P. Two-scale convergence. International Journal of Pure and Applied Mathematics, 2002, 2(1): 35-86

[38]

Ma CP, Scheichl R, Dodwell T. Novel design and analysis of generalized finite element methods based on locally optimal spectral approximations. SIAM Journal on Numerical Analysis, 2022, 60(1): 244-273

[39]

Målqvist A, Peterseim D. Localization of elliptic multiscale problems. Mathematics of Computation, 2014, 83(290): 2583-2603

[40]

Målqvist A, Peterseim D. Numerical Homogenization by Localized Orthogonal Decomposition, 2021, Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM) volume 5 of

[41]

Milton G W. The Theory of Composites, 2002, Cambridge: Cambridge University Press volume 6 of

[42]

Mosco U. Composite media and asymptotic Dirichlet forms. Journal of Functional Analysis, 1994, 123(2): 368-421

[43]

Nesterov Yu. Gradient methods for minimizing composite functions. Mathematical Programming, 2012, 140(1): 125-161

[44]

Oleĭnik O A, Shamaev A S, Yosifian G A. Mathematical Problems in Elasticity and Homogenization, 1992, Amsterdam: North-Holland Publishing Co. volume 26 of

[45]

Pankov A. G-Convergence and Homogenization of Nonlinear Partial Differential Operators, 1997, Dordrecht: Kluwer Academic Publishers volume 422 of

[46]

Sadd M H. Chapter 7-Two-dimensional formulation. Elasticity, 2021 Fourth Edition London: Academic Press 145-162

[47]

Shen Z W. Periodic Homogenization of Elliptic Systems. Operator Theory: Advances and Applications, 2018, Cham: Birkhäuser/Springer volume 269 of

[48]

Shen Z W, Zhuge J P. Convergence rates in periodic homogenization of systems of elasticity. Proceedings of the American Mathematical Society, 2017, 145(3): 1187-1202

[49]

Shen Z W, Zhuge J P. Regularity of homogenized boundary data in periodic homogenization of elliptic systems. Journal of the Eurpoean Mathematical Society (JEMS), 2020, 22(9): 2751-2776

[50]

Shillor M, Sofonea M, Telega J J. Models and Analysis of Quasistatic Contact, 2004, Berlin, Heidelberg: Springer-Verlag

[51]

Tartar L. The General Theory of Homogenization, 2009, Berlin: Springer-Verlag volume 7 of

[52]

Temizer I. On the asymptotic expansion treatment of two-scale finite thermoelasticity. International Journal of Engineering Science, 2012, 53: 74-84

[53]

Torquato S. Random Heterogeneous Materials, 2002, New York: Springer-Verlag volume 16 of

[54]

Yang Z H, Cui J Z, Wu Y T Second-order two-scale analysis method for dynamic thermo-mechanical problems in periodic structure. International Journal of Numerical Analysis and Modeling, 2015, 12(1): 144-161

[55]

Yang Z H, Huang J Z, Feng X B An efficient MultiModes Monte Carlo ho-mogenization method for random materials. SIAM Journal on Scientific Computing, 2022, 44(3): A1752-A1774 June

[56]

Yang, Z. H., WANG, X. T. and Guan, X. F., et al., A normalizing field flow induced two-stage stochastic homogenization method for random materials, Communications in Computational Physics, to appear.

[57]

Ye C Q, Cui J Z, Dong H. Asymptotic analysis of nonlinear robin-type boundary value problems with small periodic structure. Multiscal Modeling & Simulation, 2021, 19(2): 830-845

[58]

Yosifian G A. On some homogenization problems in perforated domains with nonlinear boundary conditions. Applicable Analysis, 1997, 65(3–4): 257-288

[59]

Yosifian G A. Some homogenization problems for the system of elasticity with nonlinear boundary conditions in perforated domains. Applicable Analysis, 1999, 71(1–4): 379-411

[60]

Yosifian G A. Homogenization of some contact problems for the system of elasticity in perforated domains. Rendiconti del Seminario Matematico délla Università di Padova, 2001, 105: 37-64

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/