On Energy Gap Phenomena of the Whitney Spheres in ℂ n or ℂℙ n

Yong Luo , Liuyang Zhang

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 599 -614.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 599 -614. DOI: 10.1007/s11401-023-0034-9
Article

On Energy Gap Phenomena of the Whitney Spheres in ℂ n or ℂℙ n

Author information +
History +
PDF

Abstract

Zhang (2021), Luo and Yin (2022) initiated the study of Lagrangian submanifolds satisfying ∇*T = 0 or ∇*∇*T = 0 in ℂ n or ℂℙ n, where $T = {\nabla ^ * }\tilde h$ and ${\tilde h}$ is the Lagrangian trace-free second fundamental form. They proved several rigidity theorems for Lagrangian surfaces satisfying ∇*T = 0 or ∇*∇*T = 0 in ℂ2 under proper small energy assumption and gave new characterization of the Whitney spheres in ℂ2. In this paper, the authors extend these results to Lagrangian submanifolds in ℂ n of dimension n ≥ 3 and to Lagrangian submanifolds in ℂℙ n.

Keywords

Lagrangian submanifolds / Whitney spheres / Gap theorem / Conformal maslov form

Cite this article

Download citation ▾
Yong Luo, Liuyang Zhang. On Energy Gap Phenomena of the Whitney Spheres in ℂ n or ℂℙ n. Chinese Annals of Mathematics, Series B, 2023, 44(4): 599-614 DOI:10.1007/s11401-023-0034-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blair D E. Riemannian Geometry of Contact and Symplectic Manifolds, 2002, Basel: Birkhäuser

[2]

Borreli V, Chen B Y, Morvan J M. Une caractérisation géométrique de la sphère de Whitney. C. R. Acad. Sci. Paris Sér. I Math., 1995, 321(11): 1485-1490

[3]

Cannas da Silva A. Lectures on Symplectic Geometry, 2001, Berlin: Springer-Verlag

[4]

Cao S J, Zhao E T. Gap theorems for Lagrangian submanifolds in complex space forms. Geom. Dedicata, 2021, 215: 315-331

[5]

Castro I, Lerma A M, Miquel V. Evolution by mean curvature flow of Lagrangian spherical surfaces in complex Euclidean plane. J. Math. Anal. Appl., 2018, 462(1): 637-647

[6]

Castro I, Montealegre C R, Urbano F. Closed conformal vector fields and Lagrangian submanifolds in complex space forms. Pacific J. Math., 2001, 199(2): 269-302

[7]

Castro I, Urbano F. Lagrangian surfaces in the complex Euclidean plane with conformal Maslov form. Tohoku Math. J. (2), 1993, 45(4): 565-582

[8]

Castro I, Urbano F. Twistor holomorphic Lagrangian surfaces in the complex projective and hyperbolic planes. Ann. Global Anal. Geom., 1995, 13(1): 59-67

[9]

Castro I, Urbano F. Willmore surfaces of ℝ4 and the Whitney sphere. Ann. Global Anal. Geom., 2001, 19(2): 153-175

[10]

Chao X L, Dong Y X. Rigidity theorems for Lagrangian submanifolds of complex space forms with conformal Maslov form, Recent developments in geometry and analysis, 2012, Somerville, MA: Int. Press 17-25

[11]

Chen B Y. Jacobi’s elliptic functions and Lagrangian immersions. Proc. Royal Soc. Edinburgh, 1996, 126: 687-704

[12]

Chen B Y. On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms. Arch. Math. (Basel), 2000, 74(2): 154-160

[13]

Chen B Y. Riemannian geometry of Lagrangian submanifolds. Taiwanese J. Math., 2001, 5(4): 681-723

[14]

Dazord P. Sur la géométrie des sous-fibrés et des feuilletages lagrangiens. Ann. Sci. École Norm. Sup. (4), 1981, 14(4): 465-480

[15]

Hoffman D, Spruck J. Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math., 1974, 27: 715-727

[16]

Lawson H B Jr. Local rigidity theorems for minimal hypersurfaces. Ann. of Math. (2), 1969, 89: 187-197

[17]

Li A M, Li J M. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch. Math. (Basel), 1992, 58(6): 582-594

[18]

Li H Z, Vrancken V. A bisic inequality and new characterization of Whitney spheres in a complex space form. Israel J. Math., 2005, 146: 223-242

[19]

Lin J M, Xia C Y. Global pinching theorem for even dimensional minimal submanifolds in a unit sphere. Math. Z., 1989, 201: 381-389

[20]

Luo Y, Wang G F. On geometrically constrained variational problems of the Willmore functional I., The Lagrangian-Willmore problem. Comm. Anal. Geom., 2015, 23(1): 191-223

[21]

Luo Y, Yin J B. On energy gap phenomena of the Whitney sphere and related problems. Pacific J. Math., 2022, 320(2): 299-318

[22]

Michael J H, Simon L M. Sobolev and mean-value inequalities on generalized submanifolds of ℝn. Comm. Pure Appl. Math., 1973, 26: 361-379

[23]

Ni L. Gap theorems for minimal submanifolds in ℝ n+1. Comm. Anal. Geom., 2001, 9(3): 641-656

[24]

Ros A, Urbano F. Lagrangian submanifolds of ℂn with conformal Maslov form and the Whitney sphere. J. Math. Soc. Japan, 1998, 50(1): 203-226

[25]

Savas-Halilaj A, Smoczyk K. Lagrangian mean curvature flow of Whitney spheres. Geom. Topol., 2019, 23(2): 1057-1084

[26]

Shen C L. A global pinching theorem for minimal hypersurfaces in sphere. Proc. Amer. Math. J., 1989, 105: 192-198

[27]

Wang H. Some global pingching theorems for minimal submanifolds in a sphere. Acta Math. Sin., 1988, 31: 503-509

[28]

Weinstein A. Lectures on symplectic manifolds, 1977, R.I.: American Mathematical Society

[29]

Xu H W. ${L_{{n \over 2}}}$-pinching theorems for submanifolds with parallel mean curvature in a sphere. J. Math. Soc. Japan, 1994, 46(3): 503-515

[30]

Xu H W, Gu J R. A general gap theorem for submanifolds with parallel mean curvature in ℝn+p. Comm. Anal. Geom., 2007, 15(1): 175-194

[31]

Yun G. Total scalar curvature and L 2 harmonic 1-forms on a minimal hypersurface in Euclidean space. Geom. Dedicata, 2002, 89: 135-141

[32]

Zhang L Y. An energy gap phenomenon for the Whitney sphere. Math. Z., 2021, 297(3–4): 1601-1611

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/