Stability of Rotation Relations of Three Unitaries with the Flip Action in C*-Algebras

Zhijie Wang , Junyun Hu , Jiajie Hua

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 577 -598.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 577 -598. DOI: 10.1007/s11401-023-0033-x
Article

Stability of Rotation Relations of Three Unitaries with the Flip Action in C*-Algebras

Author information +
History +
PDF

Abstract

The authors show that if Θ = (θ jk) is a 3 × 3 totally irrational real skew-symmetric matrix, where θ jk ∈ [0, 1) for j, k = 1, 2, 3, then for any ε > 0, there exists δ > 0 satisfying the following: For any unital C*-algebra A with the cancellation property, strict comparison and nonempty tracial state space, any four unitaries u 1, u 2, u 3,wA such that (1) $||{u_k}{u_j} - {{\rm{e}}^{2\pi {\rm{i}}{\theta _{jk}}}}{u_j}{u_k}||\, < \delta $ wu j w −1 = u j −1, w 2 = 1 A for j, k = 1, 2, 3; (2) τ(aw) = 0 and $\tau ({({u_k}{u_j}u_k^ * u_j^ * )^n}) = {{\rm{e}}^{^{2\pi {\rm{i}}n{\theta _{jk}}}}}$ for all n ∈ ℕ, all aC*(u 1, u 2, u 3), j, k = 1, 2, 3 and all tracial states τ on A, where C*(u 1, u 2, u 3) is the C*-subalgebra generated by u 1, u 2 and u 3, there exists a 4-tuple of unitaries ${\tilde u_1},{\tilde u_2},{\tilde u_3},\tilde w$ in A such that ${\tilde u_k}{\tilde u_j} = {{\rm{e}}^{2\pi {\rm{i}}{\theta _{jk}}}}{\tilde u_j}{\tilde u_k},\,\,\,\,\,\,\,\tilde w{\tilde u_j}{\tilde w^{ - 1}} = \tilde u_j^{ - 1},\,\,\,\,\,{\tilde w^2} = {1_A}\,\,\,\,$ and $\Vert{u_j} - {\tilde u_j}\Vert < \varepsilon ,\,\,\,\,\Vert w - \tilde w\Vert < \varepsilon $ for j, k = 1, 2, 3. The above conclusion is also called that the rotation relations of three unitaries with the flip action is stable under the above conditions.

Keywords

C*-Algebras / Stability / Rotation relation / Unitary / Flip action

Cite this article

Download citation ▾
Zhijie Wang, Junyun Hu, Jiajie Hua. Stability of Rotation Relations of Three Unitaries with the Flip Action in C*-Algebras. Chinese Annals of Mathematics, Series B, 2023, 44(4): 577-598 DOI:10.1007/s11401-023-0033-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benjamín A, Itzá-Ortiz Phillips N C. Realization of a simple higher-dimensional noncommutative torus as a transformation group C*-algebra. Bull. Lond. Math. Soc., 2008, 40(2): 217-226

[2]

Berg I D, Davidson K R. Almost commuting matrices and the Brown-Douglas-Fillmore theorem. Bull. Amer. Math. Soc. (N.S.), 1987, 16(1): 97-100

[3]

Bratteli O, Elliott G A, Evans D E, Kishimoto A. Noncommutative spheres, I. Internat. J. Math., 1991, 2(2): 139-166

[4]

Bratteli O, Elliott G A, Evans D E, Kishimoto A. Noncommutative spheres, II, Rational rotations. J. Operator Theory, 1992, 27(1): 53-85

[5]

Bratteli O, Kishimoto A. Noncommutative spheres, III, Irrational rotations. Commun. Math. Physics, 1992, 147(3): 605-624

[6]

Chakraborty, S. and Hua, J., Higher dimensional Bott classes and the stability of rotation relations, Indiana University Mathematics Journal, 2023, arXiv:2109.00739.

[7]

Chakraborty S, Luef F. Metaplectic transformations and finite group actions on noncommutative tori. J. Operator Theory, 2019, 81(2): 147-172

[8]

Connes A. C* algèbre et géométrie différentielle. C. R. Acad. Sci. Paris Ser. A-B, 1980, 290(13): A599-A604

[9]

Davidson K R. Almost commuting Hermitian matrices. Math. Scand., 1985, 56(2): 222-240

[10]

Echterhoff S, Lück W, Phillips N C, Walters S. The structure of crossed products of irrational rotation algebras by finite subgroups of SL2(ℤ). J. Reine Angew. Math., 2010, 639: 173-221

[11]

Eilers S, Loring T A. Computing contingencies for stable relations. Internat. J. Math., 1999, 10(3): 301-326

[12]

Eilers S, Loring T A, Pedersen G K. Stability of anticommutation relations: An application of noncommutative CW complexes. J. Reine Angew. Math., 1998, 499: 101-143

[13]

Eilers S, Loring T A, Pedersen G K. Morphisms of extensions of C*-algebras: pushing forward the Busby invariant. Adv. Math., 1999, 147(1): 74-109

[14]

Exel R. The soft torus and applications to almost commuting matrices. Pacific J. Math., 1993, 160(2): 207-217

[15]

Exel R, Loring T A. Almost commuting unitary matrices. Proc. Amer. Math. Soc., 1989, 106(4): 913-915

[16]

Exel R, Loring T A. Invariants of almost commuting unitaries. J. Funct. Anal., 1991, 95(2): 364-376

[17]

Farsi C. Soft non-commutative Toral C*-algebras. J. Funct. Anal., 1997, 151(1): 35-49

[18]

Farsi C, Watling N. Symmetrized non-commutative tori. Math. Ann., 1993, 296(4): 739-741

[19]

Farsi C, Watling N. C*-algebras of dynamical systems on the non-commutative torus. Math. Scand., 1994, 75(1): 101-110

[20]

Friis P, Rørdam M. Almost commuting self-adjoint matrices — A short proof of Huaxin Lin’s theorem. J. Reine Angew. Math., 1996, 479: 121-131

[21]

Jeong J A, Lee J H. Finite groups acting on higher dimensional noncommutative tori. J. Fund. Anal, 2015, 268(2): 473-499

[22]

Halmos P R. Some unsolved problems of unknown depth about operators on Hilbert space. Proc. Roy. Soc. Edinburgh Sect. A, 1976, 76(1): 67-76 77

[23]

Hua, J., Stability of certain relations of three unitaries in C*-algebras, Internat. J. Math., 32(9), 2021, 35 pp.

[24]

Hua, J., Stability of rotation relation of two unitaries with the flip action in C*-algebras, J. Math. Anal. Appl., 506(2), 2022, 22 pp.

[25]

Hua, J., Stability of rotation relation of two unitaries with ℤ3, ℤ4 and ℤ6-actions in C*-algebras, Rocky Mountain Journal of Mathematics, https://projecteuclid.org/journals/rmjm/rocky-mountain-journal-of-mathematics/DownloadAcceptedPapers/220102-jiajiehua.pdf.

[26]

Hua J, Lin H. Rotation algebras and the Exel trace formula. Canad. J. Math., 2015, 67(2): 404-423

[27]

Hua J, Wang Q. Stability of rotation relations in C*-algebras. Canad. J. Math., 2021, 73(4): 1171-1203

[28]

Hua, J. and Wang, Z., Stability of rotation relation of two unitaries with the flip action in C*-algebras, II, Advances in Mathematics (in China), in preparation.

[29]

Hyers D H. On the stability of the linear functional equation. Proc. Nat. Acad. Sci. U. S. A., 1941, 27(4): 222-224

[30]

Kumjian A. On the K-theory of the symmetrized non-commutative torus. C. R. Math. Rep. Acad. Sci. Canada, 1990, 12(2–3): 87-89

[31]

Lin H. Almost Commuting Self-adjoint Matrices and Applications, 1997, Providence, RI: Amer. Math. Soc. 193-233

[32]

Lin H. An Introduction to the Classification of Amenable C*-Algebras, 2001, River Edge, NJ: World Scientific Publishing Co., Inc.

[33]

Phillips, N. C., Every simple higher dimensional noncommutative torus is an AT algebra, 2006, arXiv: math.OA/0609783.

[34]

Rieffel M A. C*-algebras associated with irrational rotations. Pacific J. Math., 1981, 93(2): 415-429

[35]

Rieffel M A. Dimension and stable rank in the K-theory of C*-algebras, 1983, 46(3): 301-333

[36]

Rieffel M A. The cancellation theorem for projective modules over irrational rotation C*-algebras. Proc. London Math. Soc., 1983, 47(2): 285-302

[37]

Rieffel, M. A., Non-commutative tori–a case study of non-commutative differentiable manifolds, Geometric and Topological Invariants of Elliptic Operators (Brunswick ME, 1988), J. Kaminker (ed.), Contemporary Mathematics, 105, 1990, 191–211.

[38]

Rørdam, M., Larsen, F. and Laustsen, N., An introduction to K-theory for C*-algebras, Cambridge University Press, London Mathematical Society, Student Texts (49), 2000.

[39]

Rosenthal P. Research Problems: Are almost commuting matrices near commuting matrices?. Amer. Math. Monthly, 1969, 76(8): 925-926

[40]

Voiculescu D. Remarks on the singular extension in the C*-algebra of the Heisenberg group. J. Operator Theory, 1981, 5(2): 147-170

[41]

Voiculescu D. Asymptotically commuting finite rank unitary operators without commuting approximants. Acta Sci. Math. (Szeged), 1983, 45(1–4): 429-431

[42]

Walters S. Projective modules over the non-commutative sphere. J. London Math. Soc., 1995, 51(3): 589-602

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/