Haken 3-Manifolds in Small Covers

Lisu Wu , Li Yu

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 549 -560.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 549 -560. DOI: 10.1007/s11401-023-0031-z
Article

Haken 3-Manifolds in Small Covers

Author information +
History +
PDF

Abstract

The authors prove that a 3-dimensional small cover M is a Haken manifold if and only if M is aspherical or equivalently the underlying simple polytope is a flag polytope. In addition, they find that M being Haken is also equivalent to the existence of a Riemannian metric with non-positive sectional curvature on M.

Keywords

Small cover / Haken manifold / Incompressible surface / Flag polytope

Cite this article

Download citation ▾
Lisu Wu, Li Yu. Haken 3-Manifolds in Small Covers. Chinese Annals of Mathematics, Series B, 2023, 44(4): 549-560 DOI:10.1007/s11401-023-0031-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartels A, Lück W. The Borel Conjecture for hyperbolic and CAT(0)-groups. Ann. of Math. (2), 2012, 175(2): 631-689

[2]

Bjorner A, Brenti F. Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, 231, 2005, Berlin, Heidelberg: Springer-Verlag

[3]

Davis M W. Groups generated by reflections and aspherical manifolds not covered by Euclidean space. Ann. of Math. (2), 1983, 117(2): 293-324

[4]

Davis M W. The Geometry and Topology of Coxeter Groups, 2008, Princeton: Princeton University Press

[5]

Davis M W, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 1991, 62(2): 417-451

[6]

Davis M W, Januszkiewicz T, Scott R. Nonpositive curvature of blow-ups. Selecta Math., 1998, 4(4): 491-547

[7]

Erokhovets N Y. Canonical geometrization of orientable 3-manifolds defined by vector-colourings of 3-polytopes. Mat. Sb., 2022, 213(6): 21-70

[8]

Foozwell, B., Haken n-manifolds, Ph.D. thesis, University of Melbourne, 2007, http://sites.google.com/site/bellfoozwell/.

[9]

Foozwell B, Rubinstein H. Introduction to the theory of Haken n-manifolds, 2011, Providence, RI: Amer. Math. Soc. 71-84

[10]

Foozwell B, Rubinstein H. Four-dimensional Haken cobordism theory. Illinois J. Math., 2016, 60(1): 1-17

[11]

Haglund F, Wise D T. Coxeter groups are virtually special. Adv. Math., 2010, 224(5): 1890-1903

[12]

Hatcher, A., Notes on basic 3-manifold topology, http://pi.math.cornell.edu/∼/hatcher/.

[13]

Hempel J. 3-Manifolds, 1976, Princeton: Princeton University Press

[14]

Kreck M, Lück W. Topological rigidity for non-aspherical manifolds. Pure Appl. Math. Q., 2009, 5(3): 873-914 Special Issue, In honor of Friedrich Hirzebruch, Part 2

[15]

Kuroki S, Masuda M, Yu L. Small covers, infra-solvmanifolds and curvature. Forum Math., 2015, 27(5): 2981-3004

[16]

Liu Y. Virtual cubulation of nonpositively curved graph manifolds. J. Topol., 2013, 6(4): 793-822

[17]

Nakayama H, Nishimura Y. The orientability of small covers and coloring simple polytopes. Osaka J. Math., 2005, 42: 243-256

[18]

Przytycki P, Wise D T. Mixed 3-manifolds are virtually special. J. Amer. Math. Soc., 2018, 31(2): 319-347

[19]

Waldhausen F. On irreducible 3-manifolds which are sufficiently large. Ann. Math. (2), 1968, 87: 56-88

[20]

Wu, L. S. and Yu, L., Fundamental groups of small covers revisited, Int. Math. Res. Not. IMRN, 2021(10), 7262–7298.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/