PDF
Abstract
Let M be an open Riemann surface and G: M → ℙ n(ℂ) be a holomorphic map. Consider the conformal metric on M which is given by ${\rm{d}}{s^2} = ||\tilde G|{|^{2m}}|\omega {|^2}$, where ${\tilde G}$ is a reduced representation of G, ω is a holomorphic 1-form on M and m is a positive integer. Assume that ds 2 is complete and G is k-nondegenerate(0 ≤ k ≤ n). If there are q hyperplanes H 1, H 2, ⋯, H q ⊂ ℙ n(ℂ) located in general position such that G is ramified over H j with multiplicity at least γ j(> k) for each j ∈ {1, 2, ⋯, q}, and it holds that $\sum\limits_{j = 1}^q {\left( {1 - {k \over {{\gamma _j}}}} \right) > (2n - k + 1)\left( {{{mk} \over 2} + 1} \right),} $
then M is flat, or equivalently, G is a constant map. Moreover, one further give a curvature estimate on M without assuming the completeness of the surface.
Keywords
Picard-type theorem
/
Holomorphic map
/
Riemann surface
/
Curvature estimate
Cite this article
Download citation ▾
Zhixue Liu, Yezhou Li.
Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification.
Chinese Annals of Mathematics, Series B, 2023, 44(4): 533-548 DOI:10.1007/s11401-023-0030-0
| [1] |
Bergweiler W. The role of the Ahlfors five islands theorem in complex dynamics. Conform. Geom. Dyn., 2000, 4: 22-34
|
| [2] |
Campana F. Orbifolds, special varieties and classification theory. Ann. Inst. Fourier, 2004, 54(3): 499-630
|
| [3] |
Campana F, Winkelmann J. A Brody theorem for orbifolds. Manuscripta Math., 2009, 128(2): 195-212
|
| [4] |
Chen, W., Cartan Conjecture: Defect Relation for Merommorphic Maps from Parabolic Manifold to Projective Space, Thesis, University of Notre Dame, 1987.
|
| [5] |
Chen X D, Li Y Z, Liu Z X, Ru M. Curvature estimate on an open Riemann surface with the induced metric. Math. Z., 2021, 298: 451-467
|
| [6] |
Chern S S, Osserman R. Complete minimal surfaces in euclidean n-space. J. Anal. Math., 1967, 19: 15-34
|
| [7] |
Fujimoto H. On the number of exceptional values of the Gauss maps of minimal surfaces. J. Math. Soc. Japan, 1988, 40(2): 235-247
|
| [8] |
Fujimoto H. Modified defect relations for the Gauss map of minimal surfaces. II. J. Differential Geom., 1990, 31(2): 365-385
|
| [9] |
Fujimoto H. On the Gauss curvature of minimal surfaces. J. Math. Soc. Japan, 1992, 44(3): 427-439
|
| [10] |
Fujimoto H. Value distribution theory of the Gauss map of minimal surface in ℝm, 1993, Braunschweig: Friedr. Vieweg and Sohn
|
| [11] |
Ha P H. An estimate for the Gaussian curvature of minimal surfaces in ℝm whose Gauss map is ramified over a set of hyperplanes. Differential Geom. Appl., 2014, 32: 130-138
|
| [12] |
Kawakami Y. On the maximal number of exceptional values of Gauss maps for various classes of surfaces. Math. Z., 2013, 274(3–4): 1249-1260
|
| [13] |
Kawakami Y. Function-theoretic properties for the Gauss maps of various classes of surfaces. Canad. J. Math., 2015, 67(6): 1411-1434
|
| [14] |
Liu X J, Pang X C. Normal family theory and Gauss curvature estimate of minimal surfaces in ℝm. J. Differential Geom., 2016, 103(2): 297-318
|
| [15] |
Nochka E I. On the theory of meromorphic functions. Dokl. Akad. Nauk SSSR, 1983, 269(3): 547-552
|
| [16] |
Osserman R, Ru M. An estimate for the Gauss curvature of minimal surfaces in ℝm whose Gauss map omits a set of hyperplanes. J. Differential Geom., 1997, 45: 578-593
|
| [17] |
Ros A. The Gauss map of minimal surfaces. Differential Geom., Valencia, 2002, 2001: 235-252
|
| [18] |
Rousseau E. Hyperbolicity of geometric orbifolds. Trans. Amer. Math. Soc., 2010, 362(7): 3799-3826
|
| [19] |
Ru M. On the Gauss map of minimal surfaces immersed in ℝn. J. Differential Geom., 1991, 34(2): 411-423
|
| [20] |
Ru M. Gauss map of minimal surfaces with ramification. Trans. Amer. Math. Soc., 1993, 339(2): 751-764
|