Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification

Zhixue Liu , Yezhou Li

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 533 -548.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 533 -548. DOI: 10.1007/s11401-023-0030-0
Article

Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification

Author information +
History +
PDF

Abstract

Let M be an open Riemann surface and G: M → ℙ n(ℂ) be a holomorphic map. Consider the conformal metric on M which is given by ${\rm{d}}{s^2} = ||\tilde G|{|^{2m}}|\omega {|^2}$, where ${\tilde G}$ is a reduced representation of G, ω is a holomorphic 1-form on M and m is a positive integer. Assume that ds 2 is complete and G is k-nondegenerate(0 ≤ kn). If there are q hyperplanes H 1, H 2, ⋯, H q ⊂ ℙ n(ℂ) located in general position such that G is ramified over H j with multiplicity at least γ j(> k) for each j ∈ {1, 2, ⋯, q}, and it holds that $\sum\limits_{j = 1}^q {\left( {1 - {k \over {{\gamma _j}}}} \right) > (2n - k + 1)\left( {{{mk} \over 2} + 1} \right),} $

then M is flat, or equivalently, G is a constant map. Moreover, one further give a curvature estimate on M without assuming the completeness of the surface.

Keywords

Picard-type theorem / Holomorphic map / Riemann surface / Curvature estimate

Cite this article

Download citation ▾
Zhixue Liu, Yezhou Li. Picard-Type Theorem and Curvature Estimate on an Open Riemann Surface with Ramification. Chinese Annals of Mathematics, Series B, 2023, 44(4): 533-548 DOI:10.1007/s11401-023-0030-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bergweiler W. The role of the Ahlfors five islands theorem in complex dynamics. Conform. Geom. Dyn., 2000, 4: 22-34

[2]

Campana F. Orbifolds, special varieties and classification theory. Ann. Inst. Fourier, 2004, 54(3): 499-630

[3]

Campana F, Winkelmann J. A Brody theorem for orbifolds. Manuscripta Math., 2009, 128(2): 195-212

[4]

Chen, W., Cartan Conjecture: Defect Relation for Merommorphic Maps from Parabolic Manifold to Projective Space, Thesis, University of Notre Dame, 1987.

[5]

Chen X D, Li Y Z, Liu Z X, Ru M. Curvature estimate on an open Riemann surface with the induced metric. Math. Z., 2021, 298: 451-467

[6]

Chern S S, Osserman R. Complete minimal surfaces in euclidean n-space. J. Anal. Math., 1967, 19: 15-34

[7]

Fujimoto H. On the number of exceptional values of the Gauss maps of minimal surfaces. J. Math. Soc. Japan, 1988, 40(2): 235-247

[8]

Fujimoto H. Modified defect relations for the Gauss map of minimal surfaces. II. J. Differential Geom., 1990, 31(2): 365-385

[9]

Fujimoto H. On the Gauss curvature of minimal surfaces. J. Math. Soc. Japan, 1992, 44(3): 427-439

[10]

Fujimoto H. Value distribution theory of the Gauss map of minimal surface in ℝm, 1993, Braunschweig: Friedr. Vieweg and Sohn

[11]

Ha P H. An estimate for the Gaussian curvature of minimal surfaces in ℝm whose Gauss map is ramified over a set of hyperplanes. Differential Geom. Appl., 2014, 32: 130-138

[12]

Kawakami Y. On the maximal number of exceptional values of Gauss maps for various classes of surfaces. Math. Z., 2013, 274(3–4): 1249-1260

[13]

Kawakami Y. Function-theoretic properties for the Gauss maps of various classes of surfaces. Canad. J. Math., 2015, 67(6): 1411-1434

[14]

Liu X J, Pang X C. Normal family theory and Gauss curvature estimate of minimal surfaces in ℝm. J. Differential Geom., 2016, 103(2): 297-318

[15]

Nochka E I. On the theory of meromorphic functions. Dokl. Akad. Nauk SSSR, 1983, 269(3): 547-552

[16]

Osserman R, Ru M. An estimate for the Gauss curvature of minimal surfaces in ℝm whose Gauss map omits a set of hyperplanes. J. Differential Geom., 1997, 45: 578-593

[17]

Ros A. The Gauss map of minimal surfaces. Differential Geom., Valencia, 2002, 2001: 235-252

[18]

Rousseau E. Hyperbolicity of geometric orbifolds. Trans. Amer. Math. Soc., 2010, 362(7): 3799-3826

[19]

Ru M. On the Gauss map of minimal surfaces immersed in ℝn. J. Differential Geom., 1991, 34(2): 411-423

[20]

Ru M. Gauss map of minimal surfaces with ramification. Trans. Amer. Math. Soc., 1993, 339(2): 751-764

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/