Equicontinuity and Sensitivity of Group Actions

Shaoting Xie , Jiandong Yin

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 501 -516.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 501 -516. DOI: 10.1007/s11401-023-0028-7
Article

Equicontinuity and Sensitivity of Group Actions

Author information +
History +
PDF

Abstract

Let (X, G) be a dynamical system (G-system for short), that is, X is a topological space and G is an infinite topological group continuously acting on X. In the paper, the authors introduce the concepts of Hausdorff sensitivity, Hausdorff equicontinuity and topological equicontinuity for G-systems and prove that a minimal G-system (X, G) is either topologically equicontinuous or Hausdorff sensitive under the assumption that X is a T 3-space and they provide a classification of transitive dynamical systems in terms of equicontinuity pairs. In particular, under the condition that X is a Hausdorff uniform space, they give a dichotomy theorem between Hausdorff sensitivity and Hausdorff equicontinuity for G-systems admitting one transitive point.

Keywords

Hausdorff sensitivity / Hausdorff equicontinuity / Topological equicontinuity / Even continuity

Cite this article

Download citation ▾
Shaoting Xie, Jiandong Yin. Equicontinuity and Sensitivity of Group Actions. Chinese Annals of Mathematics, Series B, 2023, 44(4): 501-516 DOI:10.1007/s11401-023-0028-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Akin E, Auslander J, Berg K. When is a transitive map chaotic?. Convergence in Ergodic Theory and Probability, 1996, 5(3): 25-40

[2]

Auslander J. Minimal Flows and Their Extensions, 1988, Amsterdam: Elsevier

[3]

Auslander J, Greschonig G, Nagar A. Reflections on equicontinuity. Proc. Amer. Math. Soc., 2014, 142(9): 3129-3137

[4]

Auslander J, Yorke J. Interval maps, factors of maps, and chaos. Tohoku Math. J., 1980, 32(2): 177-188

[5]

Cairns G, Kolganova A, Nielsen A. Topological transitivity and mixing notions for group actions. Rocky Mountain J. Math., 2007, 37(2): 371-397

[6]

Corbacho E, Tarieladze V, Vidal R. Equicontinuity and quasi-uniformities. Georgian Math. J., 2004, 11(4): 681-690

[7]

Corbacho E, Tarieladze V, Vidal R. Even continuity and topological equicontinuity in topologized semigroups. Topology Appl., 2009, 156(7): 1289-1297

[8]

Devaney R L. An Introduction to Chaotic Dynamical Systems, 2003 2 Boulder, CO: Westview Press

[9]

Engelking R. General Topology, 1989 2 Berlin: Heldermann Verlag

[10]

Good C, Leek R, Mitchell J. Equicontinuity, transitivity and sensitivity, the Auslander-Yorke dichotomy revisied. Discrete Contin. Dyn. Syst., 2020, 40(4): 2441-2474

[11]

Good C, Macías S. What is topological about topological dynamics?. Discrete Contin. Dyn. Syst., 2018, 38(3): 1007-1031

[12]

Huang W, Khilko D, Kolyada S, Zhang G. Dynamical compactness and sensitivity. J. Differential Equations, 2016, 260(9): 6800-6827

[13]

Huang W, Khilko D Finite intersection property and dynamical compactness. J. Dynam. Differential Equations, 2018, 30(3): 1221-1245

[14]

Huang W, Kolyada S, Zhang G H. Analogues of Auslander-Yorke theorems for multi-sensitivity. Ergodic Theory Dyna. Systems, 2016, 38(2): 651-665

[15]

James I. Topologies and Uniformities, 1999, London: Springer-Verlag

[16]

Kelley J L. General Topology, 1955, New York, Heidelberg, Berlin: Springer-Verlag

[17]

Li J, Tu S M. Density-equicontinuity and density-sensitivity. Acta Math Sin. (Engl. Ser.), 2021, 37(2): 345-361

[18]

Li J, Tu S M, Ye X D. Mean equicontinuity and mean sensitivity. Ergodic Theory and Dyna. Systems, 2015, 35(8): 2587-2612

[19]

Li J, Ye X D. Recent development of chaos theory in topological dynamics. Acta Math. Sin. (Engl. Ser.), 2016, 32(1): 83-114

[20]

Li J, Ye X D, Yu T. Equicontinuity and sensitivity in mean forms. J. Dynam. Differential Equations, 2022, 34(1): 133-154

[21]

Liu K, Zhou X M. Auslander-Yorke type dichotomy theorems for stronger versions of r-sensitivity. Proc. Amer. Math. Soc., 2019, 147(6): 2609-2617

[22]

Moothathu T. Stronger forms of sensitivity for dynamical systems. Nonlinearity, 2007, 20(9): 2115-2126

[23]

Noble N. Ascoli theorems and the exponential map. Trans. Amer. Math. Soc., 1969, 143: 393-411

[24]

Oprocha P, Zhang G H. Topological Aspects of Dynamics of Pairs, Tuples and Sets, 2014, Paris: Atlantis Press 665-709

[25]

Polo F. Sensitive dependence on initial conditions and chaotic group actions. Proc. Amer. Math. Soc., 2010, 138(8): 2815-2826

[26]

Poppe H. Convergence of evenly continuous nets in general function spaces. Real Anal. Exchange, 1992, 18(2): 459-464

[27]

Royden, H. L., Real Analysis, 3nd ed., Prentice-Hall, Inc., 2006.

[28]

Wang H Y. Equicontinuity, shadowing and distality in general topological spaces. Czechoslovak Math. J., 2020, 70(3): 711-726

[29]

Wang H Y, Zhong Y H. A note on sensitivity in uniform spaces. J. Dyn. Control Syst., 2018, 24(4): 625-633

[30]

Willard S. General Topology, 1970, Reading, Mass.: Addison-Wesley

[31]

Zhang G H. Relativization of complexity and sensitivity. Ergodic Theory and Dyna. Systems, 2007, 27(4): 1349-1371

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/