Bochner-Martinelli Formula for Higher Spin Operators of Several ℝ6 Variables

Guangzhen Ren , Qianqian Kang

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 489 -500.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (4) : 489 -500. DOI: 10.1007/s11401-023-0027-8
Article

Bochner-Martinelli Formula for Higher Spin Operators of Several ℝ6 Variables

Author information +
History +
PDF

Abstract

The higher spin operator of several ℝ6 variables is an analogue of the $\overline \partial$ operator in theory of several complex variables. The higher spin representation of ${\mathfrak{s}\mathfrak{o}_6}(\mathbb{C})$ is ⊙ k4 and the higher spin operator ${{\cal D}_k}$ acts on ⊙ k4-valued functions. In this paper, the authors establish the Bochner-Martinelli formula for higher spin operator ${{\cal D}_k}$ of several ℝ6 variables. The embedding of ℝ6n into the space of complex 4n × 4 matrices allows them to use two-component notation, which makes the spinor calculus on ℝ6n more concrete and explicit. A function annihilated by ${{\cal D}_k}$ is called k-monogenic. They give the Penrose integral formula over ℝ6n and construct many k-monogenic polynomials.

Keywords

Higher spin operator / k-Monogenic / Bochner-Martinelli formula / Penrose integral formula

Cite this article

Download citation ▾
Guangzhen Ren, Qianqian Kang. Bochner-Martinelli Formula for Higher Spin Operators of Several ℝ6 Variables. Chinese Annals of Mathematics, Series B, 2023, 44(4): 489-500 DOI:10.1007/s11401-023-0027-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baston R. Quaternionic complexes. J. Geom. Phys., 1992, 8: 29-52

[2]

Bureš J, Damiano A, Sabadini I. Explicit resolutions for the complex of several Fueter operators. J. Geom. Phys., 2007, 57: 765-775

[3]

Chang D C, Duong X T, Li J An explicit formula of Cauchy-Szegö kernel for quaternionic Siegel upper half space and applications. Indiana Univ. Math. J., 2021, 70(6): 2451-2477

[4]

Chang D C, Markina I, Wang W. On the Cauchy-Szegö kernel for quaternion Siegel upper half-space. Complex Anal. Oper. Theory, 2013, 7(5): 1623-1654

[5]

Colombo F, Sabadini I, Sommen F, Struppa D. Analysis of Dirac Systems and Computational Algebra, 2004, Boston: Birkhäuser

[6]

Colombo F, Souček V, Struppa D C. Invariant resolutions for several Fueter operators. J. Geom. Phys., 2006, 56: 1175-1191

[7]

Damiano A, Sabadini I, Souček V. Different approaches to the complex of three Dirac operators. Ann. Global Anal. Geom., 2014, 46(3): 313-334

[8]

Ding C, Ryan J. Some properties of the higher spin laplace operator. T. Am. Math. Soc., 2019, 371(5): 3375-3395

[9]

Ding C, Walter R, Ryan J. Construction of arbitrary order conformally invariant operators in higher spin spaces. J. Geom. Anal., 2017, 27(3): 2418-2452

[10]

Ding C, Walter R, Ryan J. Ellipticity of some higher order conformally invariant differential operators. Adv. Appl. Clifford Algebr., 2022, 32(1): 1-14

[11]

Fulton W, Harris J. Representation Theory, A First Course, 1991, New York: Springer-Verlag

[12]

Kang Q Q, Wang W. On Penrose integral formula and series expansion of k-regular functions on the quaternionic space ℍn. J. Geom. Phys., 2013, 64: 192-208

[13]

Kang Q Q, Wang W. k-Monogenic functions over 6-dimensional Euclidean space. Comp. Anal. Oper Theory, 2018, 12(5): 1219-1235

[14]

Krump L. A resolution for the Dirac operator in four variables in dimension 6. Adv. Appl. Clifford Algebras, 2009, 19: 365-374

[15]

Krump L, Souček V. The generalized Dolbeault complex in two Clifford variables. Adv. Appl. Clifford Algebras, 2007, 17(3): 537-548

[16]

Mason L, Reid-Edwards R, Taghavi-Chabert A. Conformal field theories in six-dimensional twistor space. J. Geom. Phys., 2012, 62: 2353-2375

[17]

Pertici D. Regular functions of several quaternionic variables. Ann. Mat. Pura Appl., 1988, 4(151): 39-65

[18]

Range R M. Holomorphic Functions and Integral Representations in Several Complex Variables, 1986, New York: Springer-Verlag

[19]

Ren G B, Wang H Y. Theory of several paravector variables: Bochner-Martinelli formula and Hartogs’ theorem. Sci. China Math., 2014, 57(11): 2347-2360

[20]

Sabadini I, Daniele C, Struppa D C Complexes of Dirac operators in Clifford algebras. Math. Z., 2002, 239(2): 293-320

[21]

Sämann C, Wolf M. On twistors and conformal field theories from six dimensions. J. Math. Phys., 2011, 54(1): 1-44

[22]

Wang H Y, Ren G B. Bochner-Martinelli formula for k-Cauchy-Fueter operator. J. Geom. Phys., 2014, 84(10): 43-54

[23]

Wang W. The k-Cauchy-Fueter complex, Penrose transformation and Hartogs’ phenomenon for quaternionic k-regular functions. J. Geom. Phys., 2010, 60: 513-530

[24]

Yao Z Y, Qiu C H, Zhong C P. A new technique of integral representations in ℂn. Sci. China Ser. A, 2001, 44(10): 1284-1293

[25]

Zhong T D. Some Applications of Bochner-Martinelli Integral Representation, 1984, Boston, MA: Birkhäuser Boston

[26]

Zhong T D, Chen L P. The Poincaré-Bertrand formula for the Bochner-Martinelli integral. Integr. Equat. Oper. Th., 2006, 54(4): 585-595

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/