Maximal Operators of Multilinear Singular Integrals on Weighted Hardy Type Spaces

Yongming Wen , Huoxiong Wu , Qingying Xue

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (3) : 391 -406.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (3) : 391 -406. DOI: 10.1007/s11401-023-0022-0
Article

Maximal Operators of Multilinear Singular Integrals on Weighted Hardy Type Spaces

Author information +
History +
PDF

Abstract

In this paper, the authors show that the maximal operators of the multilinear Calderón-Zygmund singular integrals are bounded from a product of weighted Hardy spaces into a weighted Lebesgue spaces, which essentially extend and improve the previous known results obtained by Grafakos and Kalton (2001) and Li, Xue and Yabuta (2011). The corresponding estimates on variable Hardy spaces are also established.

Keywords

Weighted Hardy spaces / Variable Hardy spaces / Maximal operators / Multilinear Calderón-Zygmund operators / Multiple weights

Cite this article

Download citation ▾
Yongming Wen, Huoxiong Wu, Qingying Xue. Maximal Operators of Multilinear Singular Integrals on Weighted Hardy Type Spaces. Chinese Annals of Mathematics, Series B, 2023, 44(3): 391-406 DOI:10.1007/s11401-023-0022-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen K, John R T. Weighted inequalities for vector-valued maximal functions and singular integrals. Studio, Math., 1980, 69(1): 19-31 81

[2]

Coifman R. A real variable characterization of H p. Studia Math., 1974, 51: 269-274

[3]

Coifman R, Weiss G. Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc, 1977, 83(4): 569-645

[4]

Cruz-Uribe D, Fiorenza A. Variable Lebesgue Spaces: Foundations and Harmonic Analysis, 2013, Basel: Springer-Verlag

[5]

Cruz-Uribe D, Moen K, Nguyen H V. Multilinear fractional Calderón-Zygmund operators on weighted Hardy spaces. Houston J. Math., 2019, 45(3): 853-871

[6]

Cruz-Uribe D, Moen K, Nguyen H V. The boundedness of multilinear Calderón-Zygmund operators on weighted and variable Hardy spaces. Publ. Mat., 2019, 63(2): 679-713

[7]

Cruz-Uribe D, Moen K, Nguyen H V. A new approach to norm inequalities on weighted and variable Hardy spaces. Ann. Acad. Sci. Fenn. Math., 2020, 45: 175-198

[8]

Cruz-Uribe D, Naibo V. Kato-Ponce inequalities on weighted and variable Lebesgue spaces. Differential Integral Equations., 2016, 29(9–10): 801-836

[9]

Cruz-Uribe D, Wang L-A. Variable Hardy spaces. Indiana Univ. Math. J., 2014, 63(2): 447-493

[10]

Fefferman C, Stein E. H p spaces of several variables. Acta Math., 1972, 129(3–4): 137-193

[11]

García-Cuerva, L., Weighted H p spaces, Disserlaiiones Math. (Rozpramy Mat.), 162, 1979, 63 pp.

[12]

Gatto A B, Gutiérrez C F, Wheeden R L. Fractional integrals on weighted H p spaces. Trans. Amer. Math. Soc, 1985, 289(2): 575-589

[13]

Grafakos L, Kalton N J. Multilinear Calderón-Zygmund operators in Hardy spaces. Collect. Math., 2001, 52(2): 169-180

[14]

Grafakos L, Nakamura S, Nguyen H V, Sawano Y. Conditions for boundedness into Hardy spaces. Math. Nachr., 2019, 292(11): 2383-2410

[15]

Grafakos L, Nakamura S, Nguyen H V, Sawano Y. Multiplier conditions for boundedness into Hardy spaces. Ann. Inst. Fourier, 2021, 71(3): 1047-1064

[16]

Hart J, Oliveira L. Hardy space estimates for limited ranges of Muckenhoupt weights. Adv. Math., 2017, 313: 803-838

[17]

Li W, Xue Q, Yabuta K. Multilinear Calderón-Zygmund operators on weighted Hardy spaces. Studia Math., 2010, 199(1): 1-16

[18]

Li W, Xue Q, Yabuta K. Maximal operator for multilinear Calderón-Zygmund singular integral operators on weighted Hardy spaces. J. Math. Anal. Appt., 2011, 373(2): 384-392

[19]

Lu G, Zhu Y. Bounds of singular integrals on weighted Hardy spaces and discrete Littlewood-Paley analysis. J. Geom. Anal, 2012, 22(3): 666-684

[20]

Nakai E, Sawano Y. Hardy spaces with variable exponents and generalized Campanato spaces. J. Fund. Anal, 2012, 262(9): 3665-3748

[21]

Rocha P, Urcitiolo M. Fractional type integral operators on variable Hardy spaces. Acta. Math. Hungar., 2014, 143(2): 502-514

[22]

Ströerg J-O, Torchinsky A. Weighted Hardy Spaces, 1989, Berlin, New York: Springer-Verlag OCLC: 298624160

[23]

Orlicz W. Über konjugierte exponentenfolgen. Studio, Math., 1931, 3: 200-211

[24]

Tan J. Bilinear Calderón-Zygmund operators on products of variable Hardy spaces. Forum Math., 2019, 31(1): 187-198

[25]

Tan, J., Multilinear fractional type operators and their commutators on Hardy spaces with variable exponents, Anal. Math. Phys., 10 (4), 2020, 16pp.

[26]

Tan J, Zhao J. Multilinear pseudo-differential operators on product of local Hardy spaces with variable exponents. J. Pseudo-Differ. Oper. Appl, 2019, 10(2): 379-396

[27]

Xue Q, Yan J. Multilinear version of reversed Hölder inequality and its applications to multilinear Calderón-Zygmund operators. J. Math. Soc. Japan., 2012, 64(4): 1053-1069

AI Summary AI Mindmap
PDF

115

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/