Liouville Type Theorems for Nonlinear p-Laplacian Equation on Complete Noncompact Riemannian Manifolds

Guangyue Huang , Liang Zhao

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (3) : 379 -390.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (3) : 379 -390. DOI: 10.1007/s11401-023-0021-1
Article

Liouville Type Theorems for Nonlinear p-Laplacian Equation on Complete Noncompact Riemannian Manifolds

Author information +
History +
PDF

Abstract

In this paper, the authors study the gradient estimates for positive weak solutions to the following p-Laplacian equation ${\Delta _p}u + a{u^\sigma } = 0$ on complete noncompact Riemannian manifold, where a, σ are two nonzero real constants with p ≠ 2. Using the gradient estimate, they can get the corresponding Liouville theorem. On the other hand, by virtue of the Poincaré inequality, they also obtain a Liouville theorem under some integral conditions with respect to positive weak solutions.

Keywords

p-Laplacian / Liouville theorem / Positive weak solution

Cite this article

Download citation ▾
Guangyue Huang, Liang Zhao. Liouville Type Theorems for Nonlinear p-Laplacian Equation on Complete Noncompact Riemannian Manifolds. Chinese Annals of Mathematics, Series B, 2023, 44(3): 379-390 DOI:10.1007/s11401-023-0021-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bidaut-Veron M F, Veron L. Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math., 1991, 106: 489-539

[2]

Chang S C, Chen J T, Wei S W. Liouville properties for p-harmonic maps with finite q-energy. Trans. Amer. Math. Soc., 2016, 368: 787-825

[3]

Gidas B, Spruck J. Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 1981, 34: 525-598

[4]

Guo Z M, Wei J C. Hausdorff dimension of ruptures for solutions of a semilinear elliptic equation with singular nonlinearity. Manuscripta Math., 2006, 120: 193-209

[5]

Huang, G. Y. and Ma, B. Q., Hamilton-Souplet-Zhang's gradient estimates for two types of nonlinear parabolic equations under the Ricci flow, J. Funct. Spaces, 2016, 2016, Art. ID 2894207, 7 pp.

[6]

Kotschwar B, Ni L. Gradient estimate for p-harmonic functions, 1/H flow and an entropy formula. Ann. Sci. Éc. Norm. Supér., 2009, 42: 1-36

[7]

Li Z, Huang G Y. Upper bounds on the first eigenvalue for the p-Laplacian. Mediterr. J. Math., 2020, 17: 18

[8]

Ma B Q, Huang G Y. Hamilton-Souplet-Zhang’s gradient estimates for two weighted nonlinear parabolic equations. Appl. Math. J. Chinese Univ. Ser. B, 2017, 32: 353-364

[9]

Ma B Q, Huang G Y, Luo Y. Gradient estimates for a nonlinear elliptic equation on complete Riemannian manifolds. Proc. Amer. Math. Soc., 2018, 146: 4993-5002

[10]

Peng, B., Wang, Y. D. and Wei, G. D., Gradient estimates for Δu + au p+1 = 0 and Liouville theorems, 2020, arXiv:2009.14566.

[11]

Wang L F, Zhu Y P. A sharp gradient estimate for the weighted p-Laplacian. Appl. Math. J. Chinese Univ. Ser. B, 2012, 27: 462-474

[12]

Wang Y Z, Li H Q. Lower bound estimates for the first eigenvalue of the weighted p-Laplacian on smooth metric measure spaces. Differential Geom. Appl., 2016, 45: 23-42

[13]

Yang Y Y. Gradient estimates for the equation Δu + cu α = 0 on Riemannian manifolds. Acta. Math. Sinica, 2010, 26: 1177-1182

[14]

Zhao L. Liouville theorem for weighted p-Lichnerowicz equation on smooth metric measure space. J. Differ. Equ., 2019, 266: 5615-5624

[15]

Zhao L, Shen M. Gradient estimates for p-Laplacian Lichnerowicz equation on noncompact metric measure space. Chin. Ann. Math. Ser. B, 2020, 41: 397-406

AI Summary AI Mindmap
PDF

183

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/