Nonlinear Schrödinger Approximation for the Electron Euler-Poisson Equation

Huimin Liu , Xueke Pu

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (3) : 361 -378.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (3) : 361 -378. DOI: 10.1007/s11401-023-0020-2
Article

Nonlinear Schrödinger Approximation for the Electron Euler-Poisson Equation

Author information +
History +
PDF

Abstract

The nonlinear Schrödinger (NLS for short) equation plays an important role in describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. In this paper, the authors study the NLS approximation by providing rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation, an important model to describe Langmuir waves in a plasma. They derive an approximate wave packet-like solution to the evolution equations by the multiscale analysis, then they construct the modified energy functional based on the quadratic terms and use the rotating coordinate transform to obtain uniform estimates of the error between the true and approximate solutions.

Keywords

Modulation approximation / Nonlinear Schrödinger equation / Electron Euler-Poisson equation

Cite this article

Download citation ▾
Huimin Liu, Xueke Pu. Nonlinear Schrödinger Approximation for the Electron Euler-Poisson Equation. Chinese Annals of Mathematics, Series B, 2023, 44(3): 361-378 DOI:10.1007/s11401-023-0020-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ablowitz M J, Segur H. Solitons and the Inverse Scattering Transform, 1981, Philadelphia, Pa.: SIAM

[2]

Düll W P. Justification of the nonlinear Schrödinger approximation for a quasilinear Klein-Gordon equation. Commun. Math. Phys., 2017, 355: 1189-1207

[3]

Düll W P, Heß M. Existence of long time solutions and validity of the nonlinear Schrödinger approximation for a quasilinear dispersive equation. J. Differ. Equ., 2018, 264(4): 2598-2632

[4]

Düll W P, Schneider G, Wayne C E. Justification of the Nonlinear Schrödinger equation for the evolution of gravity driven 2D surface water waves in a canal of finite depth. Arch. Ration. Mech. Anal., 2016, 220(2): 543-602

[5]

Guo Y. Smooth irrotational flows in the large to the Euler-Poisson system in R 3+1. Commun. Math. Phys., 1998, 195(2): 249-265

[6]

Guo Y, Han L J, Zhang J J. Absence of shocks for one dimensional Euler-Poisson system. Arch. Ration. Mech. Anal., 2017, 223: 1057-1121

[7]

Hunter J K, Ifrim M, Tataru D, Wong T K. Long time solutions for a Buregers-Hilbert equation via a modified energy method. Proc. Amer. Math. Soc., 2015, 143: 3407-3412

[8]

Ionescu A D, Pausader B. The Euler-Poisson system in 2D: global stability of the constant equilibrium solution. Int. Math. Res. Not., 2013, 2013: 761-826

[9]

Jang J. The two-dimensional Euler-Poisson system with spherical symmetry. J. Math. Phys., 2012, 53(2): 023701

[10]

Jang J, Li D, Zhang X. Smooth global solutions for the two-dimensional Euler-Poisson system. Forum Math., 2014, 26(3): 645-701

[11]

Kako M. Nonlinear modulation of plasma waves. Prog. Theor. Phys. Supp., 1974, 55: 120-137

[12]

Kalyakin L A. Asymptotic decay of a one-dimensional wave packet in a nonlinear dispersive medium. Sb. Math., 1988, 60: 457-483

[13]

Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math., 1988, 41(7): 891-907

[14]

Kirrmann P, Schneider G, Mielke A. The validity of modulation equations for extended systems with cubic nonlinearities. Proc. Roy. Soc. Edinburgh Sect. A., 1992, 122: 85-91

[15]

Liu H M, Pu X K. Justification of the NLS approximation for the Euler-Poisson equation. Commun. Math. Phys., 2019, 371(2): 357-398

[16]

Li D, Wu Y F. The Cauchy problem for the two dimensional Euler-Poisson system. J. Eur. Math. Soc., 2014, 16: 2211-2266

[17]

Schneider G. Justification of the NLS approximation for the KdV equation using the Miura transformation. Adv. Math. Phys., 2011, 2011: 854719

[18]

Schneider G, Wayne C E. The long-wave limit for the water wave problem I, The case of zero surface tension. Commun. Pure Appl. Math., 2000, 53(12): 1475-1535

[19]

Schneider G, Wayne C E. Justification of the NLS approximation for a quasilinear water wave model. J. Differ. Equ., 2011, 251: 238-269

[20]

Shatah J. Normal forms and quadratic nonlinear Klein-Gordon equations. Commun. Pure Appl. Math., 1985, 38(5): 685-696

[21]

Totz N. A justification of the modulation approximation to the 3D full water wave problem. Commun. Math. Phys., 2015, 335: 369-443

[22]

Totz N, Wu S J. A rigorous justification of the modulation approximation to the 2D full water wave problem. Commun. Math. Phys., 2012, 310(3): 817-883

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/