PDF
Abstract
In this paper, the authors consider the range of a certain class of ASH algebras in [An, Q., Elliott, G. A., Li, Z. and Liu, Z., The classification of certain ASH C*-algebras of real rank zero, J. Topol. Anal., 14(1), 2022, 183–202], which is under the scheme of the Elliott program in the setting of real rank zero C*-algebras. As a reduction theorem, they prove that all these ASH algebras are still the AD algebras studied in [Dadarlat, M. and Loring, T. A., Classifying C *-algebras via ordered, mod-p K-theory, Math. Ann., 305, 1996, 601–616].
Keywords
Classification
/
AD algebra
/
Range
/
Reduction
Cite this article
Download citation ▾
Qingnan An, Zhichao Liu.
On the Range of Certain ASH Algebras of Real Rank Zero.
Chinese Annals of Mathematics, Series B, 2023, 44(2): 279-288 DOI:10.1007/s11401-023-0014-0
| [1] |
An Q, Elliott G A. On the KK-theory of Elliott-Thomsen algebras. J. Operator Theory, 2017, 78(2): 435-472
|
| [2] |
An Q, Elliott G A, Li Z, Liu Z. The classification of certain ASH C*-algebras of real rank zero. J. Topol. Anal., 2022, 14(1): 183-202
|
| [3] |
Blackadar B. The homotopy lifting theorem for semiprojective C*-algebras. Math. Scand., 2016, 118(2): 291-302
|
| [4] |
Bratteli O. Inductive limits of finite-dimensional C*-algebras. Trans. Amer. Math. Soc., 1972, 171: 195-234
|
| [5] |
Dadarlat M, Gong G. A classification result for approximately homogeneous C*-algebras of real rank zero. Geom. Funct. Anal., 1997, 7(4): 646-711
|
| [6] |
Dadarlat M, Loring T A. Classifying C*-algebras via ordered, mod-p K-theory. Math. Ann., 1996, 305: 601-616
|
| [7] |
Dixmier J. On some C*-algebras considered by Glimm. J. Funct. Anal., 1967, 1: 182-203
|
| [8] |
Effros E, Handelman D, Shen C L. Dimension groups and their affine representations. Amer. J. Math., 1980, 102: 385-407
|
| [9] |
Eilers S. A complete invariant for AD algebras with bounded torsion in K 1. J. Funct. Anal., 1996, 139(2): 325-348
|
| [10] |
Eilers S, Loring T A, Pedersen G K. Fragility of subhomogeneous C*-algebras with one-dimensional spectrum. Bull. London Math. Soc., 1999, 31(3): 337-344
|
| [11] |
Elliott G A. On the classification of inductive limits of sequence of semisimple finite-dimensional algebras. J. Algebra, 1976, 38: 29-44
|
| [12] |
Elliott G A. On the classification of C*-algebras of real rank zero. J. Reine Angew. Math., 1993, 443: 179-219
|
| [13] |
Elliott, G. A., Gong, G., Lin, H. and Niu, Z., On the classification of simple amenable C*-algebras with finite decomposition rank II, 2015, arXiv: 1507.03437v2.
|
| [14] |
Elliott G A, Gong G, Su H. On the Classification of C*-algebras of Real Rank Zero, IV, 1998, Providence, RI: Amer. Math. Soc.
|
| [15] |
Glimm J. On a certain class of operator algebras. Trans. Amer. Math. Soc., 1960, 95: 318-340
|
| [16] |
Gong G. On the classification of simple inductive limit C*-algebras. I. The reduction theorem. Doc. Math., 2002, 7: 255-461
|
| [17] |
Gong G, Lin H, Niu Z. A classification of finite simple amenable $\cal{Z}$-stable C*-algebras, I: C*-algebras with generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can., 2020, 42(3): 63-450
|
| [18] |
Gong G, Lin H, Niu Z. A classification of finite simple amenable $\cal{Z}$-stable C*-algebras, II: C*-algebras with rational generalized tracial rank one. C. R. Math. Acad. Sci. Soc. R. Can., 2020, 42(4): 451-539
|
| [19] |
Jiang X, Su H. On a simple unital projectionless C*-algebra. Amer. J. Math., 1999, 121(2): 359-413
|
| [20] |
Li Z. On the simple inductive limits of splitting interval algebras with dimension drops. Canad. J. Math., 2012, 64(3): 544-572
|
| [21] |
Liu Z. A decomposition theorem for real rank zero inductive limits of 1-dimensional non-commutative CW complexes. J. Topol. Anal., 2019, 11(1): 181-204
|
| [22] |
Loring T A. C*-algebras generated by stable relations. J. Funct. Anal., 1993, 112: 159-201
|
| [23] |
Mygind J. Classification of certain simple C*-algebras with torsion in K1. Canad. J. Math., 2001, 53(6): 1223-1308
|
| [24] |
Thomsen K. Limits of certain subhomogeneous C*-algebras. Mem. Soc. Math. Fr. (N.S.), 1997, 71: 125
|
| [25] |
Tikuisis A, White S, Winter W. Quasidiagonality of nuclear C*-algebras. Ann. Math., 2017, 185(1): 229-284
|
| [26] |
Zhang S. A Riesz decomposition property and ideal structure of multiplier algebras. J. Operator Theory, 1990, 24(2): 209-225
|