The Refined Schwarz-Pick Estimates for Positive Real Part Holomorphic Functions in Several Complex Variables

Xiaosong Liu

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 265 -278.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 265 -278. DOI: 10.1007/s11401-023-0013-1
Article

The Refined Schwarz-Pick Estimates for Positive Real Part Holomorphic Functions in Several Complex Variables

Author information +
History +
PDF

Abstract

In this article, the refined Schwarz-Pick estimates for positive real part holomorphic functions $p(x)=p(0)+\sum\limits_{m=k}^{\infty}{{D^{m}p(0)(x^{m})}\over{m!}}:G\rightarrow\mathbb{C}$ are given, where k is a positive integer, and G is a balanced domain in complex Banach spaces. In particular, the results of first order Fréchet derivative for the above functions and higher order Fréchet derivatives for positive real part holomorphic functions $p(x)=p(0)+\sum\limits_{s=1}^{\infty}{{D^{sk}p(0)(x^{sk})}\over{(sk)!}}:G\rightarrow\mathbb{C}$ are sharp for G = B, where B is the unit ball of complex Banach spaces or the unit ball of complex Hilbert spaces. Their results reduce to the classical result in one complex variable, and generalize some known results in several complex variables.

Keywords

Refined Schwarz-Pick estimate / Positive real part holomorphic function / First order Fréchet derivative / Higher order Fréchet derivatives

Cite this article

Download citation ▾
Xiaosong Liu. The Refined Schwarz-Pick Estimates for Positive Real Part Holomorphic Functions in Several Complex Variables. Chinese Annals of Mathematics, Series B, 2023, 44(2): 265-278 DOI:10.1007/s11401-023-0013-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Graham I, Kohr G. Geometric Function Theory in One and Higher Dimensions, 2003, New York: Marcel Dekker

[2]

Dai S Y, Pan Y F. Note on Schwarz-Pick estimates for bounded and positive real part analytic functions. Proc. Amer. Math. Soc., 2008, 136(2): 635-640

[3]

Samaris N. On the extreme points of a subclass of holomorphic functions with positive real part. Math. Ann., 1986, 274(4): 609-612

[4]

Yamashita S. The higher derivatives of functions bounded in various senses. Bull. Aust. Math. Soc., 1986, 34: 321-334

[5]

Dai, S. Y., The higher order Schwarz-Pick estimates for holomorphic mappings, Nanjing, Nanjing Normal Univ. Ph. D. thesis, 2011.

[6]

Liu Y, Chen Z H. Schwarz-Pick estimates for positive real part holomorphic functions on unit ball and polydisc. Sci. China Math., 2010, 53(4): 1017-1024

[7]

Liu T S, Liu X S. On the precise growth, covering, and distortion theorems for normalized biholomorphic mappings. J. Math. Anal. Appl., 2004, 295: 404-417

[8]

Goluzin G M. Some estimations of derivatives of bounded functions. Rec. Math. Mat. Sbornik N.S., 1945, 16(58): 295-306

[9]

Franzoni, T. and Vesentini, E., Holomorphic Maps and Invariant Distances, North-Holland, Amsterdam, 1980.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/