The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension

Yan Yan , Weiping Yan

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 209 -234.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 209 -234. DOI: 10.1007/s11401-023-0011-3
Article

The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension

Author information +
History +
PDF

Abstract

In this paper, the authors consider the zero-viscosity limit of the three dimensional incompressible steady Navier-Stokes equations in a half space ℝ+ × ℝ2. The result shows that the solution of three dimensional incompressible steady Navier-Stokes equations converges to the solution of three dimensional incompressible steady Euler equations in Sobolev space as the viscosity coefficient going to zero. The method is based on a new weighted energy estimates and Nash-Moser iteration scheme.

Keywords

Navier-Stokes equations / Euler equations / Zero viscosity limit

Cite this article

Download citation ▾
Yan Yan, Weiping Yan. The Inviscid Limit for the Steady Incompressible Navier-Stokes Equations in the Three Dimension. Chinese Annals of Mathematics, Series B, 2023, 44(2): 209-234 DOI:10.1007/s11401-023-0011-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abidi H, Danchin R. Optimal bounds for the inviscid limit of Navier-Stokes equations. Asymptot. Anal., 2004, 38: 35-46

[2]

Alinhac S. Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Par. Diff. Eq., 1989, 14(2): 173-230

[3]

Beale J T, Majda A. Rates of convergence for viscous splitting of the Navier-Stokes. Math. Comp., 1981, 37: 243-259

[4]

Constantin P, Elgindi T, Ignatova M, Vicol V. Remarks on the inviscid limit for the Navier-Stokes equations for uniformly bounded velocity fields. SIAM J. Math. Anal., 2017, 49: 1932-1946

[5]

Constantin P, La J, Vicol V. Remarks on a paper by Gavrilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications. Geom. Funct. Anal., 2019, 29: 1773-1793

[6]

Gavrilov A V. A steady Euler flow with compact support. Geom. Funct. Anal., 2019, 29: 190-197

[7]

Gerard-Varet D, Maekawa Y. Sobolev stability of Prandtl expansions for the steady Navier-Stokes equations. Arch. Rational Mech. Anal., 2019, 233: 1319-1382

[8]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order, 1983 2nd ed. Berlin: Springer-Verlag

[9]

Guo Y, Nguyen T. Prandtl boundary layer expansions of steady Navier-Stokes flows over a moving plate. Ann. PDE, 2017, 3(10): 58pp

[10]

Hörmander L. Implicit Function Theorems, 1977, Palo Alto: Stanford University

[11]

Iftimie D, Planas G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity, 2006, 19: 899-918

[12]

Iftimie D, Sueur F. Viscous boundary layer for the Navier-Stokes equations with the Navier slip conditions. Arch. Ration. Mech. Anal., 2011, 199: 145-175

[13]

Iyer S. Steady Prandtl boundary layer expansions over a rotating disk. Arch. Ration. Mech. Anal., 2017, 224: 421-469

[14]

Kato T. Nonstationary flows of viscous and ideal fluids in ℝ3. J. Funct. Anal., 1972, 9: 296-305

[15]

Kukavica I, Vicol V, Wang F. The inviscid limit for the Navier-Stokes equations with data analytic only near the boundary. Arch. Rational Mech. Anal., 2020, 237: 779-827

[16]

Li L, Li Y Y, Yan X K. Vanishing viscosity limit for homogeneous axisymmetric no-swirl solutions of stationary Navier-Stokes equations. J. Funct. Anal., 2019, 277: 3599-3652

[17]

Maekawa Y. On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half-plane. Comm. Pure Appl. Math., 2014, 67: 1045-1128

[18]

Masmoudi N, Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition. Arch. Ration. Mech. Anal., 2012, 203: 529-575

[19]

Masmoudi N, Rousset F. Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equations. Arch. Ration. Mech. Anal., 2017, 223: 301-417

[20]

Moser J. A rapidly converging iteration method and nonlinear partial differential equations I. Ann. Scuola Norm. Sup. Pisa., 1966, 20: 265-313

[21]

Moser J. A rapidly converging iteration method and nonlinear partial differential equations II. Ann. Scuola Norm. Sup. Pisa., 1966, 20: 499-535

[22]

Nash J. The embedding for Riemannian manifolds. Amer. Math., 1956, 63: 20-63

[23]

Nguyen T T, Nguyen T T. The inviscid limit of Navier-Stokes equations for analytic data on the half-space. Arch. Rational Mech. Anal., 2018, 230: 1103-1129

[24]

Olenik O A. On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid. J. Appl. Math. Mech., 1967, 30: 951-974

[25]

Olenik O A, Samokhin V N. Mathematical Models in Boundary Layer Theory, 15, 1999, Boca Raton, FL: Chapman & Hall/CRC

[26]

Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Commun. Math. Phys., 1998, 192: 433-461

[27]

Sammartino M, Caflisch R E. Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II., Construction of the Navier-Stokes solution. Commun. Math. Phys., 1998, 192: 463-491

[28]

Swann H S G. The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in ℝ3. Trans. Am. Math. Soc., 1971, 157: 373-397

[29]

Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, North-Holland, Amsterdam, New York, Oxford, 1984.

[30]

Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis, 1995 2nd ed. Philadelphia: SIAM

[31]

Temam R, Wang X. On the behavior of the solutions of the Navier-Stokes equations at vanishing viscosity. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1997, 25: 807-828

[32]

Wang C, Wang Y X, Zhang Z F. Zero-viscosity limit of the Navier-Stokes equations in the analytic setting. Arch. Rational Mech. Anal., 2017, 224: 555-595

[33]

Xiao Y, Xin Z. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Commun. Pure Appl. Math., 2007, 60: 1027-1055

[34]

Yan W P. The motion of closed hypersurfaces in the central force field. J. Differ. Eq., 2016, 261: 1973-2005

[35]

Yan W P. Dynamical behavior near explicit self-similar blow up solutions for the Born-Infeld equation. Nonlinearity, 2019, 32: 4682-4712

[36]

Yan W P. Nonlinear stablility of explicit self-similar solutions for the timelike extremal hypersurfaces in ℝ3. Calc. Var. Par. Diff. Eq., 2020, 59: 124

[37]

Yan W P. Asymptotic stability of explicit blowup solutions for three-dimensional incompressible magnetohydrodynamics equations. J. Geom. Anal., 2021, 31: 12053-12097

[38]

Yan W P, Radulescu V. Global small finite energy solutions for the incompressible magnetohydrodynamics equations in ℝ+ × ℝ2. J. Differ. Eq., 2021, 277: 114-152

[39]

Yan W P, Zhang B L. Long time existence of solution for the bosonic membrane in the light cone gauge. J. Geom. Anal., 2021, 31: 395-422

AI Summary AI Mindmap
PDF

159

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/