3-Bihom-ρ-Lie Algebras, 3-Pre-Bihom-ρ-Lie Algebras

Zahra Bagheri , Esmaeil Peyghan

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 193 -208.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 193 -208. DOI: 10.1007/s11401-023-0010-4
Article

3-Bihom-ρ-Lie Algebras, 3-Pre-Bihom-ρ-Lie Algebras

Author information +
History +
PDF

Abstract

The purpose is to introduce the notions of 3-Bihom-ρ-Lie algebras and 3-pre-Bihom-ρ-Lie algebras. The authors describe their constructions and express the related lemmas and theorems. Also, they define the 3-Bihom-ρ-Leibniz algebras and show that a 3-Bihom-ρ-Lie algebra is a 3-Bihom-ρ-Leibniz algebra with the ρ-Bihom-skew symmetry property. Moreover, a combination of a 3-Bihom-ρ-Lie algebra bracket and a Rota-Baxer operator gives a 3-pre-Bihom-ρ-Lie algebra structure.

Keywords

3-Bihom-ρ-Lie algebra / 3-Pre-Bihom-ρLie algebra / Rota-Baxer operator

Cite this article

Download citation ▾
Zahra Bagheri, Esmaeil Peyghan. 3-Bihom-ρ-Lie Algebras, 3-Pre-Bihom-ρ-Lie Algebras. Chinese Annals of Mathematics, Series B, 2023, 44(2): 193-208 DOI:10.1007/s11401-023-0010-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abdaoui, K., Ben Hassine, A. and Makhlouf, A., BiHom-Lie colour algebras structures, 2017, arX-iv:1706.02188.

[2]

Armakan A R, Silvestrov S, Farhangdoost M R. Extensions of hom-Lie color algebras. Geor. Math. J., 2021, 28(1): 15-27

[3]

Bagger, J. and Lambert, N., Gauge symmetry and supersymmetry of multiple M2-branes, Phys. Rev. D, 77 (6), 2008, 6 pp.

[4]

Bagheri Z, Peyghan E. Quadratic and symplectic structures on 3-(Hom)-ρ-Lie algebras. J. Math. Phys., 2021, 62: 081702

[5]

Bai, C., Guo, L. and Sheng, Y., Bialgebras, the classical Yang-Baxer equation and manin triples for 3-Lie algebras, Advances in Theoretical and Mathematical Physics, 23(1) 2016, https://doi.org/10.4310/ATM-P.2019.v23.n1.a2.

[6]

Filippov V T. n-Lie algebras. Siberian. Math. J., 1985, 26: 879-891

[7]

Gerstenhaber M. The cohomology structure of an associative ring. Ann. Math., 1963, 78: 267-288

[8]

Graziani, G., Makhlouf, A., Menini, C. and Panaite, F., Bihom-associative algebras, Bihom-Lie algebras and Bihom-bialgebras, Symmetry, Integrability and Geometry, SIGMA, 11 (86), 2015, 34 pp.

[9]

Gustavsson A. Algebraic structures on parallel M2-branes. Nuclear Physics B, 2009, 811(1–2): 66-76

[10]

Hartwig J T, Larsson D, Silvestrov S D. Deformations of Lie algebras using σ-derivations. J. Algebra, 2006, 295: 314-361

[11]

Ho P, Hou R, Matsuo Y. Lie 3-algebra and multiple M2-branes. J. High. Energy Phys., 2008, 6: 020

[12]

Kitouni, A., Makhlouf, A. and Silvestrov, S., On n-ary Generalization of BiHom-Lie Algebras and BiHom-Associative Algebras, Silvestrov, S., Malyarenko, A., Rancic, M. (Eds.), Algebraic Structures and Applications, Springer Proceedings in Mathematics and Statistics, 317, 2020, arXiv:1812.00094v1 [math.RA].

[13]

Li J, Chen L. The construction of 3-Bihom-Lie algebras. Commu. Alg., 2020, 48(12): 5374-5390

[14]

Li J, Chen L, Cheng Y. Representations of Bihom-Lie superalgebras. Lin. Multi. Algebra, 2019, 67(2): 299-326

[15]

Liu Y, Chen L, Ma Y. Representations and module-extensions of 3-hom-Lie algebras. J. Geom. Phys., 2015, 98: 376-383

[16]

Liu L, Makhlouf A, Menini C, Panaite F. BiHom-pre-Lie algebras, BiHom-Leibniz algebras and Rota-Baxter operators on BiHom-Lie algebras. Geor. Math. J., 2021, 28(4): 581-594

[17]

Nambu Y. Generalized Hamiltonian dynamics. Phys. Rev. D, 1973, 7: 2405-2412

[18]

Peyghan E, Gezer A, Bagheri Z, Gultekin I. Representations and deformations of 3-Hom-ρ-Lie algebras. J. Algebra Appl., 2023, 22(3): 2350064

[19]

Sheng Y, Chen D. Hom-Lie 2 algebras. J. Algebra, 2013, 376: 174-195

[20]

Sheng Y, Tang R. Symplectic, product and complex structures on 3-Lie algebras. J. Algbra, 2018, 508: 256-300

[21]

Takhtajan L. On foundation of the generalized Nambu mechanics. Commun. Math. Phys., 1994, 160: 295-316

[22]

Wang S, Guo S. BiHom-Lie superalgebra structures and Bihom-Yang-Baxter equations. Advances in Applied Clifford Algebras, 2020, 30(3): 35

[23]

Yuan L. Hom-Lie color algebra structures. Commu. Algebra, 2012, 40(2): 575-592

[24]

Zhang T. Cohomology and deformations of 3-Lie colour algebras. Lin. Multi. Algebra, 2015, 63(4): 651-671

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/