A Theory of Orbit Braids

Fengling Li , Hao Li , Zhi Lü

Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 165 -192.

PDF
Chinese Annals of Mathematics, Series B ›› 2023, Vol. 44 ›› Issue (2) : 165 -192. DOI: 10.1007/s11401-023-0009-x
Article

A Theory of Orbit Braids

Author information +
History +
PDF

Abstract

In this paper, the authors systematically discuss orbit braids in M × I with regards to orbit configuration space F G(M, n), where M is a connected topological manifold of dimension at least 2 with an effective action of a finite group G. These orbit braids form a group, named orbit braid group, which enriches the theory of ordinary braids.

The authors analyze the substantial relations among various braid groups associated to those configuration spaces F G(M, n), F(M/G, n) and F(M, n). They also consider the presentations of orbit braid groups in terms of orbit braids as generators by choosing M = ℂ with typical actions of ℤ p and (ℤ2)2.

Keywords

Orbit braid / Orbit configuration space

Cite this article

Download citation ▾
Fengling Li, Hao Li, Zhi Lü. A Theory of Orbit Braids. Chinese Annals of Mathematics, Series B, 2023, 44(2): 165-192 DOI:10.1007/s11401-023-0009-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allcock D, Basak T. Geometric generators for braid-like groups. Geom. Topol., 2016, 20: 747-778

[2]

Allcock D, Basak T. Generators for a complex hyperbolic braid group. Geom. Topol., 2018, 22(6): 3435-3500

[3]

Artin E. Theorie der Zöpfe. Ahb. Math. Sem. Univ. Hamburg, 1925, 4: 47-72

[4]

Artin E. Theory of braids. Ann. of Math., 1947, 48: 101-126

[5]

Bibby, C. and Gadish, N., Combinatorics of orbit configuration spaces, 2018, arXiv:1804.06863.

[6]

Birman J S. Braids, Links, and Mapping Class Groups, 1974, Princeton, NJ: Princeton Univ. Press

[7]

Bredon G E. Intrduction to compact transformation groups, 1972, New York, London: Academic Press

[8]

Brieskorn E. Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe. Invent. Math., 1971, 12: 57-61

[9]

Brieskorn E. Sur les groupes de tresses (d’apräs V.I. Arnol’d), Séminaire Bourbaki, 24ème année (1971/1972). Lecture Notes in Math., 1973, 317: 21-44

[10]

Chen J D, Z, Wu J. Orbit configuration spaces of small covers and quasi-toric manifolds. Science China Mathematics., 2021, 64(1): 167-196

[11]

Chow W L. On the algebraical braid group. Ann. of Math., 1948, 49: 654-658

[12]

Davis M, Januszkiewicz T. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J., 1991, 61: 417-451

[13]

Deligne P. Les immeubles des groupes de tresses généralisés. Invent. Math., 1972, 17: 273-302

[14]

Fadell E, Neuwirth L. Configuration spaces. Math. Scand., 1962, 10: 111-118

[15]

Fox R, Neuwirth L. The braid groups. Math. Scand., 1962, 10: 119-126

[16]

Fricke R, Klein F. Vorlesungen über die Theorie der automorphen Funktionen, Bd. I. Gruppentheoretischen Grundlagen, Teubner, Leipzig, 1897, 1965, New York: Johnson

[17]

Goryunov V V. The cohomology of braid groups of series C and D. Trudy Moskov. Mat. Obshch., 1981, 42: 234-242

[18]

Hurwitz A. Über Riemannsche Flächen mit gegebenen Verzweigungspunkten. Math. Ann., 1891, 39(1): 1-60

[19]

Looijenga E. Artin groups and the fundamental groups of some moduli spaces. J. Topol., 2008, 1(1): 187-216

[20]

Randell R. The fundamental group of the complement of a union of complex hyperplanes: Correction. Invent. math., 1985, 80: 467-468

[21]

Rhodes F. On the fundamental group of a transformation group. Proceedings of the London Mathematical Society, 1966, 3(1): 635-650

[22]

Switzer R M. Algebraic Topology—Homotopy and Homology, 1975, New York, Heidelberg: Springer-Verlag

[23]

Vershinin V V. Braid groups and loop spaces. Russian Mathematical Surveys, 1999, 54: 273-350

[24]

Xicoténcatl M A. m Orbit configuration spaces, infinitesimal braid relations in homology and equivariant loop spaces, 1997, Rochester: University of Rochester

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/