On the Generalized Geroch Conjecture for Complete Spin Manifolds

Xiangsheng Wang , Weiping Zhang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 1143 -1146.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 1143 -1146. DOI: 10.1007/s11401-022-0381-y
Article

On the Generalized Geroch Conjecture for Complete Spin Manifolds

Author information +
History +
PDF

Abstract

Let W be a closed area enlargeable manifold in the sense of Gromov-Lawson and M be a noncompact spin manifold, the authors show that the connected sum M#W admits no complete metric of positive scalar curvature. When W = T n, this provides a positive answer to the generalized Geroch conjecture in the spin setting.

Keywords

Positive scalar curvature / Connected sum / Spin manifolds

Cite this article

Download citation ▾
Xiangsheng Wang, Weiping Zhang. On the Generalized Geroch Conjecture for Complete Spin Manifolds. Chinese Annals of Mathematics, Series B, 2022, 43(6): 1143-1146 DOI:10.1007/s11401-022-0381-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bartnik, R. A. and Chru sciel, P. T., Boundary value problems for Dirac-type equations, with applications, 2003, arXiv: math/0307278 [math.DG].

[2]

Cecchini, S. and Zeidler, R., The positive mass theorem and distance estimates in the spin setting, 2021, arXiv: 2108.11972v2.

[3]

Chodosh, O. and Li, C., Generalized soap bubbles and the topology of manifolds with positive scalar curvature, 2020, arXiv:2008.11888v3.

[4]

Gromov M, Lawson H B. Spin and scalar curvature in the presence of a fundamental group I. Ann. of Math., 1980, 111: 209

[5]

Gromov M, Lawson H B. Positive scalar curvature and the Dirac operator on complete Riemannian manifolds. Publ. Math. I.H.E.S., 1983, 58: 295

[6]

Lesourd, M., Unger, R. and Yau, S.-T., Positive scalar curvature on noncompact manifolds and the Liouville theorem, 2020, arXiv:2009.12618.

[7]

Lohkamp J. Scalar curvature and hammocks. Math. Ann., 1999, 313: 385

[8]

Lohkamp, J., The higher dimensional positive mass theorem II, 2016, arXiv:1612.07505.

[9]

Parker T, Taubes C. On Witten’s proof of the positive energy theorem. Commun. Math. Phys., 1982, 84: 223-238

[10]

Schoen R, Yau S T. On the structure of manifolds with positive scalar curvature. Manuscripta Math., 1979, 28: 159

[11]

Schoen R, Yau S T. On the proof of the positive mass conjecture in general relativity. Commun. Math. Phys., 1979, 65: 45

[12]

Schoen R, Yau S T. Complete manifolds with nonnegative scalar curvature and the positive action conjecture in general relativity. Proc. Nat. Acad. Sci. U.S.A., 1979, 76: 1024-1025

[13]

Schoen, R. and Yau, S. T., Positive scalar curvature and minimal hypersurface singularities, Surveys in Differential Geometry XXIV, 2021, 441–480, arXiv:1704.05490.

[14]

Su G, Zhang W. Tian G, Han Q, Zhang Z. Positive scalar curvature and connected sums. Surveys in Geometric Analysis, 2018, Beijing: Science Press 144-150 2017

[15]

Witten E. A new proof of the positive energy theorem. Commun. Math. Phys., 1981, 80: 381-402

[16]

Zhang, W., Nonnegative scalar curvature and area decreasing maps, SIGMA, 16(33), 2020, 7 p.

[17]

Zhu, J., Positive mass theorem with arbitrary ends and its applications, 2022, arXiv: 2204.05491.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/