Convergence in Conformal Field Theory

Yi-Zhi Huang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 1101 -1124.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 1101 -1124. DOI: 10.1007/s11401-022-0379-5
Article

Convergence in Conformal Field Theory

Author information +
History +
PDF

Abstract

Convergence and analytic extension are of fundamental importance in the mathematical construction and study of conformal field theory. The author reviews some main convergence results, conjectures and problems in the construction and study of conformal field theories using the representation theory of vertex operator algebras. He also reviews the related analytic extension results, conjectures and problems. He discusses the convergence and analytic extensions of products of intertwining operators (chiral conformal fields) and of q-traces and pseudo-q-traces of products of intertwining operators. He also discusses the convergence results related to the sewing operation and the determinant line bundle and a higher-genus convergence result. He then explains conjectures and problems on the convergence and analytic extensions in orbifold conformal field theory and in the cohomology theory of vertex operator algebras.

Keywords

Conformal field theory / Vertex operator algebras / Representation theory / Convergence / Analytic extension

Cite this article

Download citation ▾
Yi-Zhi Huang. Convergence in Conformal Field Theory. Chinese Annals of Mathematics, Series B, 2022, 43(6): 1101-1124 DOI:10.1007/s11401-022-0379-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barron K. The notion of N = 1 supergeometric vertex operator superalgebra and the isomorphism theorem. Comm. Contemp. Math., 2003, 5: 481-567

[2]

Barron K. The moduli space of N=1 superspheres with tubes and the sewing operation. Memoirs Amer. Math. Soc., 2003, 162: 1-135

[3]

Belavin A, Polyakov A M, Zamolodchikov A B. Infinite conformal symmetries in two-dimensional quantum field theory. Nucl. Phys., 1984, B241: 333-380

[4]

Borcherds R E. Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci. USA, 1986, 83: 3068-3071

[5]

Carnahan, S. and Miyamoto, M., Regularity of fixed-point vertex operator subalgebras, 2016, arXiv: 1603.05645.

[6]

Dong C, Lepowsky J. Generalized Vertex Algebras and Relative Vertex Operators, 1993, Boston: Birkhäuser

[7]

Dong C, Li H, Mason G. Modular-invariance of trace functions in orbifold theory and generalized Moonshine. Comm. Math. Phys., 2000, 214: 1-56

[8]

Fiordalisi, F., Logarithmic intertwining operator and genus-one correlation functions, Ph. D. Thesis, Rutgers University, 2015. (Online PDF file of the thesis).

[9]

Fiordalisi F. Logarithmic intertwining operators and genus-one correlation functions. Comm. Contemp. Math., 2016, 18: 1650026

[10]

Frenkel, I., Huang, Y.-Z. and Lepowsky, J., On axiomatic approaches to vertex operator algebras and modules, Memoirs American Math. Soc., 104, 1993, 64 pp.

[11]

Frenkel I B, Lepowsky J, Meurman A. Vertex Operator Algebras and the Monster, 1988, Boston: Academic Press

[12]

Friedan D, Shenker S. The analytic geometry of two-dimensional conformal field theory. Nucl. Phys., 1987, B281: 509-545

[13]

Gui, B., Convergence of sewing conformal blocks, 2020, arXiv:2011.07450.

[14]

Huang Y-Z. Virasoro vertex operator algebras, (nonmeromorphic) operator product expansion and the tensor product theory. J. Alg., 1996, 182: 201-134

[15]

Huang Y-Z. Two-dimensional Conformal Geometry and Vertex Operator Algebras, 1997, Boston: Birkhäauser

[16]

Huang Y-Z. Genus-zero modular functors and intertwining operator algebras. Internat. J. Math., 1998, 9: 845-863

[17]

Huang Y-Z. Differential equations and intertwining operators. Comm. Contemp. Math., 2005, 7: 375-400

[18]

Huang Y-Z. Differential equations, duality and modular invariance. Comm. Contemp. Math., 2005, 7: 649-706

[19]

Huang Y-Z. First and second cohomologies of grading-restricted vertex algebras. Comm. Math. Phys., 2014, 327: 261-178

[20]

Huang Y-Z. A cohomology theory of grading-restricted vertex algebras. Comm. Math. Phys., 2014, 327: 279-307

[21]

Huang, Y.-Z., Some open probelms in mathematical two-dimensional conformal field theory, Proceedings of the Conference on Lie Algebras, Vertex Operator Algebras, and Related Topics, held at University of Notre Dame, Notre Dame, Indiana, August 14–18, 2015, ed. K. Barron, E. Jurisich, H. Li, A. Milas, K. C. Misra, Contemp. Math., 695, American Mathematical Society, Providence, RI, 2017, 123–138.

[22]

Huang Y-Z. A construction of lower-bounded generalized twisted modules for a grading-restricted vertex (super)algebra. Comm. Math. Phys., 2020, 377: 909-945

[23]

Huang, Y.-Z., Representation theory of vertex operator algebras and orbifold conformal field theory, Lie Groups, Number Theory, and Vertex Algebras, ed. by D. Adamovic, A. Dujella, A. Milas and P. Pandzic, Contemp. Math., 768, Amer. Math. Soc., Providence, RI, 2021, 221–152.

[24]

Huang Y-Z, Lepowsky J. A theory of tensor products for module categories for a vertex operator algebra, I. Selecta Mathematica (New Series), 1995, 1: 699-756

[25]

Huang Y-Z, Lepowsky J. Intertwining operator algebras and vertex tensor categories for affine Lie algebras. Duke Math. J., 1999, 99: 113-134

[26]

Huang, Y.-Z., Lepowsky, J. and Zhang, L., Logarithmic tensor category theory for generalized modules for a conformal vertex algebra, II: Logarithmic formal calculus and properties of logarithmic intertwining operators, 2010, arXiv: 1012.4196.

[27]

Huang, Y.-Z., Lepowsky, J. and Zhang, L., Logarithmic tensor category theory, VI: Expansion condition, associativity of logarithmic intertwining operators, and the associativity isomorphisms, 2010, arX-iv:1012.4202.

[28]

Huang, Y.-Z., Lepowsky, J. and Zhang, L., Logarithmic tensor category theory, VII: Convergence and extension properties and applications to expansion for intertwining maps, 2011, arXiv:1110.1929.

[29]

Huang Y-Z, Qi F. The first cohomology, derivations and the reductivity of a (meromorphic open-string) vertex algebra. Trans. Amer. Math. Soc., 2020, 373: 7817-7868

[30]

Knizhnik V G, Zamolodchikov A B. Current algebra and Wess-Zumino models in two dimensions. Nuclear Phys. B, 1984, 247: 83-103

[31]

Lepowsky, J. and Li, H., Introduction to Vertex Operator Algebras and Their Representations, Progress in Math., 227, Birkhäuser, Boston, 2003.

[32]

McRae, R., On rationality for C 2-cofinite vertex operator algebras, 2021, arXiv:2108.01898.

[33]

Miyamoto, M., Intertwining operators and modular invariance, 2000, arXiv:math/0010180.

[34]

Miyamoto M. Modular invariance of vertex operator algebras satisfying C 2-cofiniteness. Duke Math. J., 2004, 122: 51-91

[35]

Moore G, Seiberg N. Classical and quantum conformal field theory. Comm. Math. Phys., 1989, 123: 177-254

[36]

Qi, F., On the extensions of the left modules for meromorphic open-string vertex algebra, I, in preparation.

[37]

Segal, G., The Definition of Conformal Field Theory, Topology, Geometry and Quantum Field Theory, Proceedings of the 2002 Oxford Symposium in Honour of the 60th Birthday of Graeme Segal, Tillmann, U. (ed.), London Mathematical Society Lecture Note Series, 308, Cambridge University Press, Cambridge, 2004, 421–577.

[38]

Tsuchiya A, Kanie Y. Vertex operators in conformal field theory on ℙ1 and monodromy representations of braid group, Conformal Field Theory and Solvable Lattice Models, 1988, Boston: Academic Press 297-372

[39]

Verlinde E. Fusion rules and modular transformations in 2D conformal field theory. Nucl. Phys., 1988, B300: 360-376

[40]

Zhu Y. Global vertex operators on Riemann surfaces. Comm Math. Phys., 1994, 165: 485-531

[41]

Zhu Y. Modular invariance of characters of vertex operator algebras. J. Amer. Math. Soc., 1996, 9: 237-307

AI Summary AI Mindmap
PDF

170

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/