Recent Progress in Applications of the Conditional Nonlinear Optimal Perturbation Approach to Atmosphere-Ocean Sciences

Mu Mu , Kun Zhang , Qiang Wang

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 1033 -1048.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 1033 -1048. DOI: 10.1007/s11401-022-0376-8
Article

Recent Progress in Applications of the Conditional Nonlinear Optimal Perturbation Approach to Atmosphere-Ocean Sciences

Author information +
History +
PDF

Abstract

The conditional nonlinear optimal perturbation (CNOP for short) approach is a powerful tool for predictability and targeted observation studies in atmosphere-ocean sciences. By fully considering nonlinearity under appropriate physical constraints, the CNOP approach can reveal the optimal perturbations of initial conditions, boundary conditions, model parameters, and model tendencies that cause the largest simulation or prediction uncertainties. This paper reviews the progress of applying the CNOP approach to atmosphere-ocean sciences during the past five years. Following an introduction of the CNOP approach, the algorithm developments for solving the CNOP are discussed. Then, recent CNOP applications, including predictability studies of some high-impact ocean-atmospheric environmental events, ensemble forecast, parameter sensitivity analysis, uncertainty estimation caused by errors of model tendency or boundary condition, are reviewed. Finally, a summary and discussion on future applications and challenges of the CNOP approach are presented.

Keywords

Conditional nonlinear optimal perturbation / Atmosphere / Ocean / Targeted observation / Predictability

Cite this article

Download citation ▾
Mu Mu, Kun Zhang, Qiang Wang. Recent Progress in Applications of the Conditional Nonlinear Optimal Perturbation Approach to Atmosphere-Ocean Sciences. Chinese Annals of Mathematics, Series B, 2022, 43(6): 1033-1048 DOI:10.1007/s11401-022-0376-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chemin J Y, Desjardins B, Gallagher I, Grenier E. An introduction to rotating fluids and the Navier-Stokes equations. Mathematical Geophysics, 32, 2006, Oxford: The Clarendon Press, Oxford University Press

[2]

Salama, A., Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects, 2nd ed., B. Cushman-Roisin and J.-M. Beckers, Academic Press, 2013.

[3]

Charney J G, FjÖrtoft R, Neumann J V. Numerical integration of the barotropic vorticity equation. Tellus, 1950, 2: 237-254

[4]

Bryan K. A numerical method for the study of the circulation of the world ocean. J. Comput. Phys., 1969, 4: 347-376

[5]

Randall D A, Bitz C M, Danabasoglu G 100 years of earth system model development. Meteorol. Monogr., 2019, 59: 12.1-12.66

[6]

Palmer T N, Shutts G J, Hagedorn R Representing model uncertainty in weather and climate prediction. Annu. Rev. Earth Planet. Sci., 2005, 33: 163-193

[7]

Slingo J, Palmer T. Uncertainty in weather and climate prediction. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 2011, 369: 4751-4767

[8]

Mu M, Duan W, Tang Y M. The predictability of atmospheric and oceanic motions: Retrospect and prospects. Sci. China Earth Sci., 2017, 60: 2001-2012

[9]

Mu M, Duan W, Chou J. Recent advances in predictability studies in China (1999–2002). Adv. Atmos. Sci., 2004, 21: 437-443

[10]

Latif M, Collins M, Pohlmann H, Keenlyside N. A review of predictability studies of Atlantic sector climate on decadal time scales. J. Clim., 2006, 19: 5971-5987

[11]

Tang Y, Zhang R, Liu T Progress in ENSO prediction and predictability study. Natl. Sci. Rev., 2018, 5: 826-839

[12]

Mu M, Wang Q. Applications of nonlinear optimization approach to atmospheric and oceanic sciences. Sci. Sin. Math., 2017, 47: 1207-1222

[13]

Thompson P D. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 1957, 9: 275-295

[14]

Boer G J. A study of atmosphere-ocean predictability on long time scales. Clim. Dyn., 2000, 16: 469-477

[15]

Schneider T, Griffies S M. A conceptual framework for predictability studies. J. Clim., 1999, 12: 3133-3155

[16]

Palmer T N, Gelaro R, Barkmeijer J, Buizza R. Singular vectors, metrics, and adaptive observations. J. Atmos. Sci., 1998, 55: 633-653

[17]

Palmer T N, Zanna L. Singular vectors, predictability and ensemble forecasting for weather and climate. J. Phys. A Math. Theor., 2013, 46: 254018

[18]

Lorenz E N. A study of the predictability of a 28-variable atmospheric model. Tellus, 1965, 17: 321-333

[19]

Farrell B F. Small error dynamics and the predictability of atmospheric flows. J. Atmos. Sci., 1990, 47: 2409-2416

[20]

Fujii, Y., Tsujino, H., Usui, N., et al., Application of singular vector analysis to the Kuroshio large meander, J. Geophys. Res. Ocean., 113, 2008.

[21]

Zanna L, Heimbach P, Moore A M, Tziperman E. Upper-ocean singular vectors of the North Atlantic climate with implications for linear predictability and variability. Q. J. R. Meteorol. Soc., 2012, 138: 500-513

[22]

Wang Q, Mu M, Dijkstra H A. Effects of nonlinear physical processes on optimal error growth in predictability experiments of the Kuroshio Large Meander. J. Geophys. Res. Ocean., 2013, 118: 6425-6436

[23]

Geng Y, Wang Q, Mu M, Zhang K. Predictability and error growth dynamics of the Kuroshio Extension state transition process in an eddy-resolving regional ocean model. Ocean Model., 2020, 153: 101659

[24]

Mu M, Duan W, Wang B. Conditional nonlinear optimal perturbation and its applications. Nonlinear Process. Geophys., 2003, 10: 493-501

[25]

Cherubini S, De Palma P, Robinet J C, Bottaro A. Rapid path to transition via nonlinear localized optimal perturbations in a boundary-layer flow. Phys. Rev. E — Stat. Nonlinear, Soft Matter Phys., 2010, 82: 66302

[26]

Pringle C C T, Kerswell R R. Using nonlinear transient growth to construct the minimal seed for shear flow turbulence. Phys. Rev. Lett., 2010, 105: 154502

[27]

Mu M, Duan W, Chen D, Yu W. Target observations for improving initialization of high-impact ocean-atmospheric environmental events forecasting. Natl. Sci. Rev., 2015, 2: 226-236

[28]

Mu M. Methods, current status, and prospect of targeted observation. Sci. China Earth Sci., 2013, 56: 1997-2005

[29]

Mu M, Duan W, Wang Q, Zhang R. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlinear Process. Geophys., 2010, 17: 211-220

[30]

Duan W, Zhou F. Non-linear forcing singular vector of a two-dimensional quasi-geostrophic model. Tellus, Ser. A Dyn. Meteorol. Oceanogr., 2013, 65: 18452

[31]

Wang Q, Mu M. A new application of conditional nonlinear optimal perturbation approach to boundary condition uncertainty. J. Geophys. Res. Ocean., 2015, 120: 7979-7996

[32]

Mu M, Sun L, Dijkstra H A. The sensitivity and stability of the oceans thermohaline circulation to finite-amplitude perturbations. J. Phys. Oceanogr., 2004, 34: 2305-2315

[33]

Zu Z, Mu M, Dijkstra H A. Optimal initial excitations of decadal modification of the Atlantic meridional overturning circulation under the prescribed heat and freshwater flux boundary conditions. J. Phys. Oceanogr., 2016, 46: 2029-2047

[34]

Duan W, Liu X, Zhu K, Mu M. Exploring the initial errors that cause a significant “spring predictability barrier” for El Niño events. J. Geophys. Res. Ocean., 2009, 114: C04022

[35]

Duan W, Mu M. Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation. J. Geophys. Res. Ocean., 2006, 111(C7): C07015

[36]

Mu M, Yu Y, Xu H, Gong T. Similarities between optimal precursors for ENSO events and optimally growing initial errors in El Niño predictions. Theor. Appl. Climatol., 2014, 115: 461-469

[37]

Hu J, Duan W. Relationship between optimal precursory disturbances and optimally growing initial errors associated with ENSO events: Implications to target observations for ENSO prediction. J. Geophys. Res. Ocean., 2016, 121: 2901-2917

[38]

Mu M, Xu H, Duan W. A kind of initial errors related to “spring predictability barrier” for El Niño events in Zebiak-Cane model. Geophys. Res. Lett., 2007, 34: L03709

[39]

van Scheltinga A D, Dijkstra H A. Conditional nonlinear optimal perturbations of the double-gyre ocean circulation. Nonlinear Process. Geophys., 2008, 15(5): 727-734

[40]

Mu M, Jiang Z. A method to find perturbations that trigger blocking onset: Conditional nonlinear optimal perturbations. J. Atmos. Sci., 2008, 65: 3935-3946

[41]

Jiang Z, Wang D. A study on precursors to blocking anomalies in climatological flows by using conditional nonlinear optimal perturbations. Q. J. R. Meteorol. Soc., 2010, 136: 1170-1180

[42]

Qin X, Mu M. Influence of conditional nonlinear optimal perturbations sensitivity on typhoon track forecasts. Q. J. R. Meteorol. Soc., 2012, 138: 185-197

[43]

Wang Q, Mu M, Dijkstra H A. The similarity between optimal precursor and optimally growing initial error in prediction of Kuroshio large meander and its application to targeted observation. J. Geophys. Res. Ocean., 2013, 118: 869-884

[44]

Zhang K, Wang Q, Mu M, Liang P. Effects of optimal initial errors on predicting the seasonal reduction of the upstream Kuroshio transport. Deep. Res. Part I Oceanogr. Res. Pap., 2016, 116: 220-235

[45]

Qin X, Mu M. A study on the reduction of forecast error variance by three adaptive observation approaches for tropical cyclone prediction. Mon. Weather Rev., 2011, 139: 2218-2232

[46]

Mu M, Zhou F, Wang H. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: Conditional nonlinear optimal perturbation. Mon. Weather Rev., 2009, 137: 1623-1639

[47]

Zhang K, Mu M, Wang Q. Identifying the sensitive area in adaptive observation for predicting the upstream Kuroshio transport variation in a 3-D ocean model. Sci. China Earth Sci., 2017, 60: 866-875

[48]

Mu M, Jiang Z. A new approach to the generation of initial perturbations for ensemble prediction: Conditional nonlinear optimal perturbation. Chinese Sci. Bull., 2008, 53: 2062-2068

[49]

Jiang Z, Mu M. A comparison study of the methods of conditional nonlinear optimal perturbations and singular vectors in ensemble prediction. Adv. Atmos. Sci., 2009, 26: 465-470

[50]

Huo Z, Duan W, Zhou F. Ensemble forecasts of tropical cyclone track with orthogonal conditional nonlinear optimal perturbations. Adv. Atmos. Sci., 2019, 36: 231-247

[51]

Sun, G. and Mu, M., Response of a grassland ecosystem to climate change in a theoretical model, Advances in Atmospheric Sciences, 28 (6), 1266–1278.

[52]

Wang B, Huo Z. Extended application of the conditional nonlinear optimal parameter perturbation method in the common land model. Adv. Atmos. Sci., 2013, 30: 1213-1223

[53]

Sun G, Mu M. A flexible method to determine the sensitive physical parameter combination for soil carbon under five plant types. Ecosphere, 2017, 8: e01920

[54]

Gao Y, Mu M, Zhang K. Impacts of parameter uncertainties on deep chlorophyll maximum simulation revealed by the CNOP-P approach. J. Oceanol. Limnol., 2020, 38: 1382-1393

[55]

Duan W, Zhao P. Revealing the most disturbing tendency error of Zebiak-Cane model associated with El Ninño predictions by nonlinear forcing singular vector approach. Clim. Dyn., 2015, 44: 2351-2367

[56]

Mu M, Duan W. Applications of conditional nonlinear optimal perturbation to the studies of predictability problems. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 281-296 (in Chinese)

[57]

Wang Q, Mu M, Sun G. A useful approach to sensitivity and predictability studies in geophysical fluid dynamics: Conditional non-linear optimal perturbation. Natl. Sci. Rev., 2020, 7: 214-223

[58]

Mu B, Ren J, Yuan S. An efficient approach based on the gradient definition for solving conditional nonlinear optimal perturbation. Math. Probl. Eng., 2017, PT.11: 3208431.1-3208431.10

[59]

Wang B, Tan X. A fast algorithm for solving CNOP and associated target observation tests. Acta Meteorologica Sinica, 2009, 23: 387-402

[60]

Wang B, Tan X. Conditional nonlinear optimal perturbations: Adjoint-free calculation method and preliminary test. Mon. Weather Rev., 2010, 138: 1043-1049

[61]

Zheng Q, Dai Y, Zhang L On the application of a genetic algorithm to the predictability problems involving “On-Off” switches. Adv. Atmos. Sci., 2012, 29: 422-434

[62]

Sun G, Mu M. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Change, 2013, 120: 755-769

[63]

Chen L, Duan W, Xu H. A SVD-based ensemble projection algorithm for calculating the conditional nonlinear optimal perturbation. Sci. China Earth Sci., 2015, 58: 385-394

[64]

Yuan S, Li M, Wang Q Optimal precursors of double-gyre regime transitions with an adjoint-free method. J. Oceanol. Limnol., 2019, 37: 1137-1153

[65]

Mu B, Ren J, Yuan S, Zhou F. Identifying typhoon targeted observations sensitive areas using the gradient definition based method. Asia-Pacific J. Atmos. Sci., 2019, 55: 195-207

[66]

Mu B, Ren J, Yuan S The optimal precursors for ENSO events depicted using the gradient-definition-based method in an intermediate coupled model. Adv. Atmos. Sci., 2019, 36: 1381-1392

[67]

Ma X, Mu M, Dai G Influence of arctic sea ice concentration on extended-range prediction of strong and long-lasting ural blocking events in winter. J. Geophys. Res. Atmo., 2022, 127: e20215D036282

[68]

Yang Z, Fang X, Mu M. The optimal precursor of El Niño in the GFDL CM2p1 model. J. Geophys. Res. Ocean., 2020, 125: e2019JC015797

[69]

Zhang K, Mu M, Wang Q CNOP-based adaptive observation network designed for improving upstream kuroshio transport prediction. J. Geophys. Res. Ocean., 2019, 124: 4350-4364

[70]

Liang P, Mu M, Wang Q, Yang L. Optimal precursors triggering the Kuroshio intrusion into the south china sea obtained by the conditional nonlinear optimal perturbation approach. J. Geophys. Res. Ocean., 2017, 34(6): 15

[71]

Liu X, Wang Q, Mu M. Optimal initial error growth in the prediction of the kuroshio large meander based on a high-resolution regional ocean model. Adv. Atmos. Sci., 2018, 35: 1362-1371

[72]

Zhou L, Wang Q, Mu M, Zhang K. Optimal precursors triggering sudden shifts in the antarctic circumpolar current transport through drake passage. J. Geophys. Res. Ocean., 2021, 126: e2021JC017899

[73]

Zhang K, Mu M, Wang Q. Increasingly important role of numerical modeling in oceanic observation design strategy: A review. Sci. China Earth Sci., 2020, 63: 1678-1690

[74]

Liu K, Guo W, Da L Improving the thermal structure predictions in the Yellow Sea by conducting targeted observations in the CNOP-identified sensitive areas. Sci. Rep., 2021, 11: 1-14

[75]

Xu H, Chen L, Duan W. Optimally growing initial errors of El Niño events in the CESM. Clim. Dyn., 2021, 56: 3797-3815

[76]

Zhou Q, Chen L, Duan W Using conditional nonlinear optimal perturbation to generate initial perturbations in ENSO ensemble forecasts. Weather Forecast., 2021, 36: 2101-2111

[77]

Zhou Q, Duan W, Hu J. Exploring sensitive area in the tropical indian ocean for El Ninño prediction: Implication for targeted observation. J. Oceanol. Limnol., 2020, 38: 1602-1615

[78]

Wei Y, Mu M, Ren H, Fu J. Conditional nonlinear optimal perturbations of moisture triggering primary MJO initiation. Geophys. Res. Lett., 2019, 46: 3492-3501

[79]

Chen G, Wang B, Liu J. Study on the sensitivity of initial perturbations to the development of a vortex observed in southwest china. J. Geophys. Res. Atmos., 2021, 126: 1-19

[80]

Peng F, Mu M, Sun G. Evaluations of uncertainty and sensitivity in soil moisture modeling on the Tibetan Plateau. Tellus A Dyn. Meteorol. Oceanogr., 2020, 72: 1-16

[81]

Sun G, Mu M. Impacts of two types of errors on the predictability of terrestrial carbon cycle. Ecosphere, 2021, 12: e03315

[82]

Sun G, Peng F, Mu M. Application of targeted observation in a model’s physical parameters for the simulation and forecast of heat flux with a land surface model. Meteorol. Appl., 2020, 27: e1883

[83]

Wang L, Shen X, Liu J, Wang B. Model uncertainty representation for a convection-allowing ensemble prediction system based on CNOP-P. Adv. Atmos. Sci., 2020, 37: 817-831

[84]

Duan W, Zhao P, Hu J, Xu H. The role of nonlinear forcing singular vector tendency error in causing the spring predictability barrier for ENSO. J. Meteorol. Res., 2016, 30: 853-866

[85]

Tao L, Duan W. Using a nonlinear forcing singular vector approach to reduce model error effects in ENSO forecasting. Weather Forecast., 2019, 34: 1321-1342

[86]

Tao L, Duan W, Vannitsem S. Improving forecasts of El Niño diversity: A nonlinear forcing singular vector approach. Clim. Dyn., 2020, 55: 739-754

[87]

Takaya K, Nakamura H. Mechanisms of intraseasonal amplification of the cold Siberian high. J. Atmos. Sci., 2005, 62: 4423-4440

[88]

Ding Y, Krishnamurti T N. Heat budget of the siberian high and the winter monsoon. Mon. Weather Rev., 1987, 115: 2428-2449

[89]

Luo D, Chen X, Dai A, Simmonds I. Changes in atmospheric blocking circulations linked with winter Arctic warming: A new perspective. J. Clim., 2018, 31: 7661-7678

AI Summary AI Mindmap
PDF

172

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/