Local Well-posedness of the Derivative Schrödinger Equation in Higher Dimension for Any Large Data

Boling Guo , Zhaohui Huo

Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 977 -998.

PDF
Chinese Annals of Mathematics, Series B ›› 2022, Vol. 43 ›› Issue (6) : 977 -998. DOI: 10.1007/s11401-022-0373-y
Article

Local Well-posedness of the Derivative Schrödinger Equation in Higher Dimension for Any Large Data

Author information +
History +
PDF

Abstract

In this paper, the authors consider the local well-posedness for the derivative Schrödinger equation in higher dimension ${u_t} - {\rm{i}}\Delta u + {\left| u \right|^2}\left( {\overrightarrow \gamma \cdot \nabla u} \right) + {u^2}\left( {\overrightarrow \lambda \cdot \nabla \overline u } \right) = 0,\,\,\,\,\left( {x,t} \right) \in {\mathbb{R}^n} \times \mathbb{R},\,\,\overrightarrow \gamma ,\overrightarrow \lambda \in {\mathbb{R}^n};\,\,n \ge 2.$

It is shown that the Cauchy problem of the derivative Schrödinger equation in higher dimension is locally well-posed in ${H^s}\left( {{\mathbb{R}^n}} \right)\,\,\left( {s > {n \over 2}} \right)$ for any large initial data. Thus this result can compare with that in one dimension except for the endpoint space ${H^{{n \over 2}}}$.

Keywords

Well-posedness / Derivative Schrödinger equation in higher dimension / Short-time X s,b / Large initial data

Cite this article

Download citation ▾
Boling Guo, Zhaohui Huo. Local Well-posedness of the Derivative Schrödinger Equation in Higher Dimension for Any Large Data. Chinese Annals of Mathematics, Series B, 2022, 43(6): 977-998 DOI:10.1007/s11401-022-0373-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bienaimé P Y. Existence locale et effet régularisant précisés pour des équations non linéaires de type Schrödinger. Rev. Mat. Iberoam., 2014, 30(3): 751-798

[2]

Bourgain J. Fourier restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, part I: Schrödinger equation, part II: The KdV equation. Geom. Funct. Anal., 1993, 2: 107-156 209–262

[3]

Coifman R, Meyer Y. Au delà des opérateurs pseudo-différentiels, 1978, Paris: Société Mathématique de France

[4]

Hayashi N, Ozawa T. Remarks on nonlinear Schrödinger equations in one space dimension. Differential Integral Equations, 1994, 7(2): 453-461

[5]

Ionescu A D, Kenig C E, Tataru D. Global well-posedness of the KP-I initial-value problem in the energy space. Invent. Math., 2008, 173(2): 265-304

[6]

Kenig C E, Ponce G, Rolvent C, Vega L. The genreal quasilinear untrahyperbolic Schrödinger equation. Advances in Mathematics, 2006, 206: 402-433

[7]

Kenig C E, Ponce G, Vega L. The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math. J., 1993, 71: 1-21

[8]

Kenig C E, Ponce G, Vega L. Small solutions to nonlinear Schrödinger equation. Ann. Inst. H. Poincaré Anal. Non Linéaire, 1993, 10: 255-288

[9]

Kenig C E, Ponce G, Vega L. A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc., 1996, 9: 573-603

[10]

Kenig C E, Ponce G, Vega L. Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations. Invent. Math., 1998, 134: 489-545

[11]

Kenig C E, Ponce G, Vega L. The Cauchy problem for quasi-linear Schrödinger equations. Invent. Math., 2004, 158: 343-388

[12]

Ozawa T, Zhai J. Global existence of small classical solutions to nonlinear Schrödinger equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2008, 25: 303-311

[13]

Takaoka H. Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity. Adv. Diff. Eq., 1999, 4: 561-680

[14]

Takaoka H. Global well-posedness for Schrödinger equation with derivative in a nonlinear term and data in low-order Sobolev Spaces. Elec. J. Diff. Eq., 2001, 42: 1-23

[15]

Tao T. Multilinear weighted convolution of L 2 functions, and applications to nonlinear dispersive equation. Amer. J. Math., 2001, 123: 839-908

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/